Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Physics Class-12th Notes
  • Physics Formulas
  • Physics Symbol
  • Application of Physics
  • Class 8 Science
  • Class 9 Science
  • Class 10 Science
  • Class 11 Science
  • Class 12 Science
  • Class 8 Study Material
  • Class 9 Study Material
  • Class 10 Study Material
  • Class 11 Study Material
  • Class 12 Study Material
Open In App
Next Article:
Magnetization and Magnetic Intensity
Next article icon

Gauss's Law

Last Updated : 15 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Gauss's law is defined as the total flux out of the closed surface is equal to the flux enclosed by the surface divided by the permittivity. The Gauss Law, which analyses electric charge, a surface, and the issue of electric flux, is analyzed. Let us learn more about the law and how it functions so that we may comprehend the equation of the law.

What is Gauss's Law?

  • According to Gauss's law, the total electric flux out of a closed surface is equal to the charge contained divided by the permittivity. The electric flux in a given area is calculated by multiplying the electric field by the area of the surface projected in a plane perpendicular to the field. The total flux associated with a closed surface equals 1 ⁄ ε0 times the charge encompassed by the closed surface, according to the Gauss law:

∮ E.ds = q ⁄ εo

  • For example, a point charge 'q' is put within a cube with the edge a. The flux across each face of the cube is now q ⁄ 6εo, according to Gauss' law. The electric field is the most fundamental concept in understanding electricity.
  • In general, the electric field of a surface is computed using Coulomb's law; however, understanding the idea of Gauss' law is required to calculate the electric field distribution in a closed surface. It describes how an electric charge is enclosed in a closed surface or how an electric charge is present in a closed surface that is enclosed.

Gauss Law Formula

According to the Gauss law formula, the total electric charge enclosed in a closed surface is proportional to the total flux enclosed by the surface. As a consequence, the total electric charge 'Q' contained by the surface is: if ε0 is electric constant and ϕ is total flux.

Q = ϕ εo

The formula of Gauss law is given by:

ϕ = Q⁄εo

Where,

  • εo is electrostatic constant,
  • Q is total charge within a given surface, and
  • ϕ is flux enclosed by surface.

The Gauss Theorem

The Gauss theorem connects the ‘flow' of electric field lines (flux) to the charges within the enclosed surface in simple terms. The net charge in the volume contained by a closed surface is exactly proportional to the net flux through the closed surface.

ϕ = E.dA = qnet ⁄ εo

The net electric flow stays 0 if no charges are contained by a surface. The number of electric field lines entering the surface equals the number of field lines exiting the surface.

A corollary of the gauss theorem statement:

The electric flux from any closed surface is only due to the sources and sinks of electric fields enclosed by the surface. The electric flux is unaffected by any charges outside the surface. Furthermore, only electric charges may operate as electric field sources or sinks. It is important to note that changing magnetic field cannot act as electric field sources or sinks.

gauss theorem
 

As it encloses a net charge, the net flow for the surface on the left is non-zero. Because the right-hand surface does not contain any charge, the net flow is zero. The Gauss law is nothing more than a repetition of Coulomb's law. Coulomb's law is readily obtained by applying the Gauss theorem to a point charge surrounded by a sphere.

Note: Gauss' law and Coulomb's law are closely related. If gauss law is applied to a point charge in a sphere, it will be the same as applying coulomb's law.

Gauss Law Equation

Gauss law equation can be understood using an integral equation. Gauss’s law in integral form is mentioned below:

∫E.dA = Q/ε0 ⇢ (1)

Where,

  • E is the electric field
  • Q is the electric charge enclosed
  • ε0 is the electric permittivity of free space
  • A is the outward pointing normal area vector

Flux is a measure of the strength of a field passing through a surface. Electric flux is given as:

Φ = ∫E⋅dA ⇢ (2)

Electric Flux and Charge Distributions

Flux Calculation for a Square Area:

Electric flux represents the amount of electric field passing through a given surface area. For a square surface, we can calculate the flux by integrating the electric field across that surface.

Formula,

Φ=∫E⋅dA

Where,

'E' the electric field vector

'dA' is the differential area vector, pointing perpendicular to the surface.

For a uniform electric field E, the flux through a square area 'A' is simply:

Φ=E×A

Where, 'E' is the magnitude of the electric field and 'A' is the area of the square.

Example: Consider a uniform electric field of 5 N/C passing through a square surface of area 2 m². The flux is:

Φ=5N/C×2m2=10N⋅m2/C

Flux Through a Surface Enclosing Charges:

According to Gauss's Law, the electric flux through a closed surface is proportional to the total charge enclosed within that surface.

Gauss's Law states:

Φ=​Qenc​​/ϵ0

Where,

'Qenc'​ is the total charge enclosed within the surface.

'ϵ0'​ is the permittivity of free space.

If we enclose a charge with a spherical surface, the flux through the surface is simply the charge divided by ϵ0​.

Example: Suppose a spherical surface encloses a total charge of Q=4×10−6 C; The flux through the surface is:

Φ= 4 ×10−6/8.85 ×10−12 =4.52×105N⋅m2/C

Net Electric Field and Charge Distributions via Gauss's Law:

Gauss's Theorem allows us to determine the net electric field generated by a given charge distribution by considering the symmetry and applying Gauss's Law.

  • For a Point Charge: The electric field around a point charge is radial and can be determined by applying Gauss's Law over a spherical Gaussian surface centered on the charge. The electric field at distance r from the charge 'Q' is:

E=1/4πϵ0​/​r2. Q/r2

  • For an Infinite Wire: The electric field depends on the charge per unit length 'λ' and distance 'r' from the wire:

E=λ/2πrϵ0

  • For a Spherical Shell: The electric field inside a spherical shell of charge is zero, and outside it behaves as if all the charge were concentrated at the center.

Electric Field from three Concentric Spherical Shells:

In electrostatics, Gauss's Law is a powerful tool for calculating electric fields, especially when dealing with symmetrical charge distributions. One such setup involves three concentric spherical shells, each carrying a charge. In this example, we will explore how to choose an appropriate Gaussian surface and apply Gauss’s Law to calculate the electric field in various regions.

Charge Distribution Setup:

Consider three concentric spherical shells with charges distributed as follows:

  • Shell 1: Charge Q1​, radius r1
  • Shell 2: Charge Q2​, radius r2
  • Shell 3: Charge Q3​, radius r3

Our aim to calculate the electric field in the following regions:

  • Inside Shell 1 (1<r1​)
  • Between Shell 1 and Shell 2 (r1<r<r2​)
  • Between Shell 2 and Shell 3 (r2<r<r3​)
  • Outside all shells (r>r3 )

Choosing an Appropriate Gaussian Surface:

For each region, we choose a Gaussian surface that takes advantage of the symmetry of the problem. Since the system is spherical, a spherical Gaussian surface will help simplify calculations.

  • For regions inside a shell, the Gaussian surface is a sphere of radius' r' smaller than the radius of the shell.
  • For regions between two shells, the Gaussian surface is a sphere of radius' r' lying between the radii of the shells.
  • For regions outside all shells, the Gaussian surface is a sphere with radius' r ' larger than the outermost shell.

Step 1: Applying Gauss's Law

Gauss’s Law states that the electric flux through a closed surface is proportional to the charge enclosed within that surface:

ΦE=Qenc/ϵ0

Where,

  • ΦE​ is the electric flux through the Gaussian surface.
  • Qenc is the total charge enclosed within the surface.
  • ϵ0 is the permittivity of free space.

The electric flux ΦE ​ is also related to the electric field' E' and the surface area 'A' of the spherical surface:

ΦE=E⋅A=E⋅4πr2

Where, 'r' is the radius of the spherical surface.

Step 2: Electric Field in Different Regions

Region 1: Inside Shell 1 (1<r1​)

  • In this region, no charge is enclosed, as we are inside the first shell.
  • By Gauss’s Law, if no charge is enclosed, the electric field is zero:E=0forr<r1E = 0 \quad \text{for} \quad r < r_1E=0forr<r1​

Region 2: Between Shell 1 and Shell 2 (r1<r<r2)

  • In this region, the Gaussian surface encloses only the charge on the first shell, Q1Q_1Q1​.
  • Applying Gauss’s Law

E⋅4πr2=Q1/ϵ0

Solving for :

E=Q1/4πϵ0r2

So, the electric field between the first and second shells depends on the distance from the center and points radially outward.

Region 3: Between Shell 2 and Shell 3 (r2<r<r3​)

  • Here, the Gaussian surface encloses both the charges on Shell 1 and Shell 2, so the total enclosed charge is :

Q1+Q2.

  • By Gauss’s Law:

E⋅4πr2=Q1+Q2/ϵ0

  • Solving for :

E=Q1+Q2/4πϵ0r2

  • ​​The electric field between the second and third shells also points radially outward and decreases with the square of the distance from the center.

Region 4: Outside All Shells (r>r3​)

  • In this region, the Gaussian surface encloses all three charges:

Q1​+Q2​+Q3​.

  • By Gauss’s Law:

E⋅4πr2=Q1+Q2+Q3/ϵ0.

  • Solving for :

E=Q1+Q2+Q3/4πϵ0r2.

​​Outside all the shells, the electric field behaves as though all the charge were concentrated at the center, and it decreases with the square of the distance from the center.

Electric Field Due to an Infinite Wire ( Cylindrical Gaussian Surface)

In electrostatics, one of the classic problems is determining the electric field produced by an infinite charged wire. Since the charge distribution is infinite, the symmetry of the problem plays a crucial role in simplifying the calculation of the electric field. To solve this, we use Gauss's Law with a cylindrical Gaussian surface that matches the symmetry of the charge distribution.

gauss law application

Charge Distribution Setup:

Consider a long, straight, and infinitely long wire that carries a uniform linear charge density' λ' (charge per unit length). Our goal is to calculate the electric field at a distance' r' from the wire.

Choosing the Gaussian Surface:

Since the wire is infinite and the charge distribution is uniform, we exploit the cylindrical symmetry of the system. The best choice for the Gaussian surface is a cylinder, coaxial with the wire, because:

  • The electric field due to a straight wire is radial (it points away from the wire or toward it depending on the charge).
  • The electric field is the same at any point on the cylindrical surface at distance rrr from the wire.

Thus, we consider a cylindrical Gaussian surface with radius 'r' and length 'L' centered around the wire.

Step 1: Applying Gauss’s Law

Gauss's Law states that the electric flux through a closed surface is proportional to the charge enclosed within that surface:

ΦE=Qenc/ϵ0

Where,

  • ΦE​ is the electric flux through the Gaussian surface.
  • Qenc is the total charge enclosed within the surface.
  • ϵ0 is the permittivity of free space.

The electric flux ΦE​ is also related to the electric field 'E' and the surface area 'A' of the cylindrical surface:

ΦE=E⋅A=E⋅(2πrL)

Where ,2πrL is the lateral surface area of the cylindrical Gaussian surface, where 'r' is the radius of the cylinder, and 'L' is the length of the cylinder.

Step 2: Calculating the Enclosed Charge

The total charge enclosed by the Gaussian surface depends on the charge density' λ' of the wire. Since the wire carries a uniform charge per unit length 'λ' the total charge enclosed by the cylindrical surface is:

Qenc=λL

Where, 'L' is the length of the cylindrical Gaussian surface.

Step 3: Electric Flux and Field Calculation

  • From Gauss’s Law:

ΦE=Qenc/ϵ0

  • Substituting for Qenc=λL and the expression for flux:

E⋅(2πrL)=λL/ϵ0

  • We can cancel the 'L' terms:

E⋅2πr=λ/ϵ0

  • Solving for 'E' the electric field at distance 'r' from the wire is:

E=λ/2πϵ0rE

This shows that the electric field produced by an infinite charged wire decreases with distance from the wire and is inversely proportional to r.

Step 4: Direction of the Electric Field

The electric field due to an infinite wire is radial and points away from the wire if the wire is positively charged or toward the wire if it is negatively charged. Since the wire is infinitely long, the electric field is the same at all points equidistant from the wire.

Applications of Gauss's Law:

Electrostatics:

  • The electric field due to an infinite wire is a fundamental example in electrostatics, helping to understand how charge distributions influence the electric field.
  • The result of this calculation is used in capacitor design and other systems where long, charged wires are involved.

Electromagnetism:

  • The electric field of an infinite wire is crucial in the study of magnetic fields produced by currents in wires. According to Ampère's Law, a current in a long, straight wire creates a magnetic field that can be calculated using similar symmetry considerations.

Quantum Mechanics:

  • In quantum mechanics, the potential and field produced by an infinite wire can help in understanding the behavior of charged particles in various quantum systems, such as the motion of electrons in the presence of electric fields from wires or conducting materials.

There are different formulae obtained from the application of Gauss law for different conditions. Below are some well-known applications of Gauss law:

  • In a medium with a dielectric constant of K, the strength of the electric field near a plane-charged conductor E = σ ⁄ K εo. Eair = σ ⁄ εo when the dielectric medium is air.
  • At a distance of ‘r' in the case of an infinite charge line, E = (1 ⁄ 4 × π r ε0) (2π ⁄ r) = λ ⁄ 2π r εo, where λ is linear charge density.
  • In a condenser or capacitor, the field between two parallel plates is E = σ ⁄ ε0, where σ is the surface charge density.
  • The electric field strength near a plane sheet of charge is E = σ ⁄ 2K εo, where σ is the surface charge density.
  • For a charged ring having a radius 'R', from the centre of the ring at a distance 'x', here, the electric field becomes: E = \frac{1}{4\pi\epsilon_o}\frac{qx}{(R^2 + x^2)^{3/2}}

Solved Examples - Gauss Law

Example 1: In the x-direction, there is a homogeneous electric field of size E = 50 N⁄C. Calculate the flux of this field across a plane square area with an edge of 5 cm in the y-z plane using the Gauss theorem. Assume that the normal is positive along the positive x-axis.

Solution:

Given:

Electric field, E = 50 N⁄C

Edge length of square, a = 5 cm = 0.05 m

The flux of the field across a plane square, ϕ = ∫ E cosθ ds

As the normal to the area points along the electric field, θ = 0.

Also, E is uniform so, Φ = E ΔS = (50 N⁄C) (0.05 m)2 = 0.125 N m2 C-1.

Hence, the flux of the given field is 0.125 N m2 C-1.

Example 2: There are three charges, q1, q2, and q3, having charges 4 C, 7 C, and 2 C enclosed in a surface. Find the total flux enclosed by the surface.

Solution:

Total charge Q,

Q = q1 + q2 + q3

= 4 C + 7 C + 2 C

= 13 C

The total flux, ϕ = Q ⁄ ε0

ϕ = 13 C ⁄ (8.854×10−12 F ⁄ m)

ϕ = 1.468 N m2 C-1

Therefore, the total flux enclosed by the surface is 1.584 N m2 C-1.

Example 3: Two conducting plates having charges Q1 and Q2, are kept parallel to each other. Find the distribution on all four surfaces.

Solution:

It can be seen from the figure that two faces lie inside the conductor when E = 0. The flux is also 0. The faces that are outside are parallel to the electric field, the flux there will be 0 too. Therefore, the total flux of the electric field is 0.

From gauss law, the total charge inside the closed surface must be 0. Therefore, the charge on the inner side of one plate should be equal to the charge on the other side.

Using the equation E = σ/2ε0, the electric field at P:

  • Due to the charge Q1 - q = (Q1 - q)/2Aε0 (downward).
  • Due to the charge +q = +q/ε0 (upward).
  • Due to the charge Q2 + q = (Q2 + q)/2Aε0 (upward)
  • Due to the charge -q = -q/ε0 (downward).

The net electric field is in the downward direction:

(Q1 - q)/2Aε0 + (-q/ε0) + (Q2 + q)/2Aε0 + +q/ε0

Q1 -q +q -Q2 = 0

q = (Q1 - Q2)/2

Q1 - q = (Q1 + Q2)/2

Q2 + q = (Q1 + Q2)/2 

Example 4: What is the differential form of the Gauss theorem?

Solution:

The electric field is related to the charge distribution at a certain location in space by the differential version of Gauss law. To clarify, according to the law, the electric field's divergence (E) is equal to the volume charge density (ρ) at a given position. It's written like this:

ΔE = ρ ⁄ ε0

Here, ε0 is the permittivity of free space.

Example 5: There are three concentric spherical shells A, B, and C with radii a, b, and c. The charges are present on shells A and C (q and -q respectively), and shell B is earthed. Find the total charges appearing on B and C.

gauss law solved example

Solution:

Since the inner surface of shell B must have a charge of -q, suppose the outer surface of B has a charge 'x'. Then, the inner surface of C must have a charge of '-x'.

Potential due to charge 'q' on A = q/4πε0b

Potential due to '-q' on inner surface of B = -q/4πε0b

Potential due to 'x' on outer surface of B = x/4πε0b

Potential due to '-x' on inner surface of C = -x/4πε0c

Potential due to 'x - q' on inner surface of C = x - q/4πε0c

Now, the net potential: VB = x/4πε0b - q/4πε0c

This potential is equated to 0 as the shell B is earthed.

Therefore, x = qb/c

Below is the figure showing the charges on each surface:

gauss law solved example 5

Related Articles

  • Electropotential Surface
  • Electric potential and potential difference
  • Electric Potential Energy
  • where ∮S represents the surface integral over a closed surface S, E is the electric field vector, dA is the surface area vector, Qenc is the total charge enclosed by the surface, and ε0 is the permittivity of free space.
  • Gauss's Law is a powerful tool for calculating electric fields in situations where the symmetry of the charge distribution makes it difficult to use Coulomb's Law. By using Gauss's Law, it is possible to calculate the electric field of a uniformly charged sphere, cylinder, or plane, for example.
  • Gauss's Law has important applications in many areas of physics, including electromagnetism, electrostatics, and quantum mechanics. It is used to analyze the behavior of electric fields in charged particles, capacitors, and other electrical devices. It also plays a key role in the understanding of electromagnetic radiation and the propagation of radio waves.


Next Article
Magnetization and Magnetic Intensity

A

anurag652
Improve
Article Tags :
  • School Learning
  • Physics
  • Class 12
  • Physics-Class-12

Similar Reads

    CBSE Class 12 Physics Notes 2023-24
    CBSE Class 12 Physics Notes are an essential part of the study material for any student wanting to pursue a career in engineering or a related field. Physics is the subject that helps us understand our surroundings using simple and complex concepts combined. Class 12 physics introduces us to a lot o
    10 min read

    Chapter 1 - ELECTRIC CHARGES AND FIELDS

    Electric Charge and Electric Field
    Electric Field is the region around a charge in which another charge experiences an attractive or repulsive force. Electric Field is an important concept in the study of electrostatics which is the branch of physics. Electric Field despite its invisible nature, powers our homes with electricity, tra
    15+ min read
    Electric Charge
    Electric Charge is the basic property of a matter that causes the matter to experience a force when placed in a electromagnetic field. It is the amount of electric energy that is used for various purposes. Electric charges are categorized into two types, that are, Positive ChargeNegative ChargePosit
    8 min read
    Conductors and Insulators
    When humans remove synthetic clothing or sweater, especially in dry weather, he or she often sees a spark or hear a crackling sound. With females' clothing like a polyester saree, this is essentially observed. Another example is Lightning a common form of electric discharge that seen in the sky duri
    9 min read
    Basic Properties of Electric Charge
    Electric Charges are fundamental in the universe. The presence of electric charges are not only seen in the field of science but also in the daily lives of human beings. For instance, rubbing dry hair with a ruler ends up making some hair strands stand up and this happens because electric charges ar
    4 min read
    Coulomb's Law
    Coulomb’s Law is defined as a mathematical concept that defines the electric force between charged objects. Columb's Law states that the force between any two charged particles is directly proportional to the product of the charge but is inversely proportional to the square of the distance between t
    9 min read
    Forces Between Multiple Charges
    When our synthetic clothing or sweater is removed from our bodies, especially in dry weather, a spark or crackling sound appears. With females' clothing like a polyester saree, this is almost unavoidable. Lightning, in the sky during thunderstorms, is another case of electric discharge. It is an ele
    10 min read
    Electric Field
    Electric field is a fundamental concept in physics, defining the influence that electric charges exert on their surroundings. This field has both direction and magnitude. It guides the movement of charged entities, impacting everything from the spark of static electricity to the functionality of ele
    14 min read
    Electric Field Lines
    Electric field lines are a representation used to visualize the electric field surrounding charged objects. They provide a way to understand the direction and strength of the electric field at different points in space. It helps analyze electric fields in various situations, such as around point cha
    5 min read
    What is Electric Flux?
    Electric flux is a fundamental concept in physics that helps us understand and quantify the electric field passing through a given surface. It provides a means to describe the flow of electric field lines through an area. Electric flux forms the basis of Gauss's Law, to calculate the net charge encl
    12 min read
    Electric Dipole
    An electric dipole is defined as a pair of equal and opposite electric charges that are separated, by a small distance. An example of an electric dipole includes two atoms separated by small distances. The magnitude of the electric dipole is obtained by taking the product of either of the charge and
    11 min read
    Continuous Charge Distribution
    Electric charge is a fundamental feature of matter that regulates how elementary particles are impacted by an electric or magnetic field. Positive and negative electric charge exists in discrete natural units and cannot be manufactured or destroyed. There are two sorts of electric charges: positive
    7 min read
    Applications of Gauss's Law
    Gauss's Law states that the total electric flux out of a closed surface equals the charge contained inside the surface divided by the absolute permittivity. The electric flux in an area is defined as the electric field multiplied by the surface area projected in a plane perpendicular to the field. N
    9 min read

    Chapter 2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE

    Electric Potential Energy
    Electrical potential energy is the cumulative effect of the position and configuration of a charged object and its neighboring charges. The electric potential energy of a charged object governs its motion in the local electric field.Sometimes electrical potential energy is confused with electric pot
    15+ min read
    Electric Potential Due to a Point Charge
    Electric forces are responsible for almost every chemical reaction within the human body. These chemical reactions occur when the atoms and their charges collide together. In this process, some molecules are formed and some change their shape. Electric forces are experienced by charged bodies when t
    7 min read
    Electric Potential Of A Dipole and System Of Charges
    Electric Potential is defined as the force experienced by a charge inside the electric field of any other charge. mathematically it is defined as the ratio of electric potential energy that is required to take a test charge from infinity to a point inside the electric field of any other charge with
    7 min read
    Equipotential Surfaces
    When an external force acts to do work, moving a body from a point to another against a force like spring force or gravitational force, that work gets collected or stores as the potential energy of the body. When the external force is excluded, the body moves, gaining the kinetic energy and losing a
    9 min read
    Potential Energy of a System of Charges
    When an external force works to accomplish work, such as moving a body from one location to another against a force such as spring force or gravitational force, that work is collected and stored as the body's potential energy. When the external force is removed, the body moves, acquiring kinetic ene
    11 min read
    Potential Energy in an External Field
    When an external force operates to conduct work, such as moving a body from one location to another against a force like spring force or gravitational force, the work is gathered and stored as potential energy in the body. When an external force is removed, the body moves, acquiring kinetic energy a
    11 min read
    Electrostatics of Conductors
    When an external force is used to remove a body from a situation. Point to another in the face of a force like spring or gravitational force That work is stored in the body as potential energy. When the external environment When a force is eliminated, the body moves, gaining and losing kinetic energ
    11 min read
    Dielectrics and Polarisation
    Have you noticed how many of the insulators are made of wood, plastic, or glass? But why is that? When we utilise wood or plastic, why don't we receive electric shocks? Why do you only get severe shocks from metal wires? We'll look at dielectrics, polarisation, the dielectric constant, and more in t
    10 min read
    Capacitor and Capacitance
    Capacitor and Capacitance are related to each other as capacitance is nothing but the ability to store the charge of the capacitor. Capacitors are essential components in electronic circuits that store electrical energy in the form of an electric charge. They are widely used in various applications,
    11 min read
    What is a Parallel Plate Capacitor?
    Answer: A Parallel Plate Capacitor is a capacitor with two parallel conducting plates separated by an insulating material and capable of storing electrical charge. Capacitance can be defined in Layman's terms as a physical quantity that indicates the ability of a component or circuit to collect and
    8 min read
    Capacitors in Series and Parallel
    Capacitors are special devices that can hold electric charges for instantaneous release in an electric circuit. We can easily connect various capacitors together as we connected the resistor together. The capacitor can be connected in series or parallel combinations and can be connected as a mix of
    7 min read
    Energy stored in a Capacitor
    Capacitors are used in almost every electronic device around us. From a fan to a chip, there are lots of capacitors of different sizes around us. Theoretically, the basic function of the capacitor is to store energy. Its common usage includes energy storage, voltage spike protection, and signal filt
    6 min read

    Chapter 3 - CURRENT ELECTRICITY

    Electric Current
    Electricity has become an essential part of our everyday life, changing the way we live and work. In the past, people depended on fire for light, warmth, and cooking. Today, we can easily turn on lights, heat our homes, and charge our devices with just a switch or button. This is all possible becaus
    10 min read
    Electric Current in Conductors
    Electric current in conductors is the movement of electric charge through a substance, usually a metallic wire or other conductor. Electric current is the rate at which an electric charge flows past a certain point in a conductor, and it is measured in amperes. When a potential difference (voltage)
    8 min read
    Ohm's Law - Definition, Formula, Applications, Limitations
    According to Ohm's law, the voltage or potential difference between two locations is proportional to the current of electricity flowing through the resistance, and the resistance of the circuit is proportional to the current or electricity travelling through the resistance. V=IR is the formula for O
    5 min read
    Drift Velocity
    Drift Velocity as the name suggests refers to the slow movement of electrons in the conductor when an Electromotive force(emf) is introduced. Electrons do not move in a straight line in the conductor, but they move randomly in the conductor colliding with the other electrons and atoms exchanging ene
    12 min read
    Limitations of Ohm's Law
    Ohm’s Law is a relationship between three physical phenomena: current, voltage, and resistance. This relationship was introduced by German physicist George Simon Ohm. That is why the law is well known as Ohm’s law. It states that the amount of steady current through a large number of materials is di
    10 min read
    Resistivity
    Resistance is the physical property of the material which opposes the current flow in the circuit whereas resistivity is the intrinsic property that helps us understand the relation between the dimension of the substance and the resistance offered by it.  In this article, we will learn about Resista
    9 min read
    Temperature Dependence of Resistance
    Devices such as batteries, cells, etc. are essential for maintaining a potential difference across the circuit and are referred to as voltage sources. When a voltage source is connected across a conductor, it creates an electric field which causes the charges to move and this causes current. The val
    5 min read
    Electrical Energy and Power
    Electric energy is the most important form of energy and is widely used in almost all the electrical devices around us. These devices have a rating written on them. That rating is expressed in Watts and intuitively explains the amount of electricity the device will consume. Bigger devices like AC, r
    9 min read
    Electromotive Force
    Electromotive Force or EMF is the work done by the per unit charge while moving from the positive end to the negative end of the battery. It can also be defined as the energy gain per unit charge while moving from the positive end to the negative end of the battery. The battery or the electric gener
    10 min read
    Combination of Cells in Series and Parallel
    There are many resistances in complex electrical circuits. There are methods to calculate the equivalent resistances in case multiple resistances are connected in series or parallel or sometimes in a combination of series and parallel. In many situations, batteries or different types of voltage sour
    6 min read
    Kirchhoff's Laws
    Kirchhoff's Laws are the basic laws used in electrostatics to solve complex circuit questions. Kirchhoff's Laws were given by Gustav Robert Kirchhoff who was a famous German Physicist. He gave us two laws Kirchhoff’s Current Law and Kirchhoff’s Voltage Law which are discussed in this article.These l
    8 min read
    Wheatstone Bridge
    Wheatstone bridge is a device that is used to find the resistance of a conductor, in 1842, scientist Wheatstone proposed a theory, which is called the principle of Wheatstone bridge after his name. we can prove or establish the formula for Wheatstone by using Kirchhoff laws. Wheatstone bridge is sim
    10 min read

    Chapter 4 - MOVING CHARGES AND MAGNETISM

    Magnetic Force on a Current carrying Wire
    When a charge is moving under the influence of a magnetic field. It experiences forces, which are perpendicular to its movement. This property of charge is exploited in a lot of fields, for example, this phenomenon is used in the making of motors which in turn are useful for producing mechanical for
    5 min read
    Motion of a Charged Particle in a Magnetic Field
    This has been already learned about the interaction of electric and magnetic fields, as well as the motion of charged particles in the presence of both electric and magnetic fields. We have also deduced the relationship of the force acting on the charged particle, which is given by the Lorentz force
    9 min read
    Biot-Savart Law
    The Biot-Savart equation expresses the magnetic field created by a current-carrying wire. This conductor or wire is represented as a vector quantity called the current element. Lets take a look at the law and formula of biot-savart law in detail, Biot-Savart Law The magnitude of magnetic induction a
    7 min read
    Magnetic Field on the Axis of a Circular Current Loop
    Moving charges is an electric current that passes through a fixed point in a fixed period of time. Moving charges are responsible for establishing the magnetic field. The magnetic field is established due to the force exerted by the flow of moving charges. As the magnetic field is established moving
    7 min read
    Ampere's Circuital Law and Problems on It
    André-Marie Ampere, a French physicist, proposed Ampere's Circuital Law. Ampere was born in Lyon, France, on January 20, 1775. His father educated him at home, and he showed an affinity for mathematics at a young age. Ampere was a mathematician and physicist best known for his work on electrodynamic
    5 min read
    Force between Two Parallel Current Carrying Conductors
    Moving charges produce an electric field and the rate of flow of charge is known as current. This is the basic concept in Electrostatics. The magnetic effect of electric current is the other important phenomenon related to moving electric charges. Magnetism is generated due to the flow of current. M
    8 min read
    Current Loop as a Magnetic Dipole
    When a charge move it generates an electric field and the rate of flow of charge is the current in the electric field. This is the basic concept in Electrostatics. The magnetic effect of electric current is the other important concept related to moving electric charges. Magnetism is generated due to
    11 min read
    Moving Coil Galvanometer
    Hans Christian Oersted discovered in 1820 that a current-carrying conducting wire produces a magnetic field around it. His findings from his experiments are as follows: The magnetic compass needle is aligned tangent to an imaginary circle centered on the current-carrying cable.When the current is re
    10 min read

    Chapter 5 - MAGNETISM AND MATTER

    Magnetism
    Magnetism in Physics is defined as the property of the material that is responsible for the magnetic behaviour of the magnets. Magnetism is defined as the force that is produced by the moving charge and it attracts or repels other magnets and moving charge. Initially, magnetism is defined as the pro
    11 min read
    Bar Magnet
    Bar Magnet is a magnet that is rectangular in shape and has two poles, the North Pole and South Pole. The magnetic field of a bar magnet is maximum at its pole and minimum at its center. Bar Magnets are made up of Iron, cobalt, or any other Ferromagnetic materials that show magnetic properties. Bar
    9 min read
    Gauss's Law
    Gauss's law is defined as the total flux out of the closed surface is equal to the flux enclosed by the surface divided by the permittivity. The Gauss Law, which analyses electric charge, a surface, and the issue of electric flux, is analyzed. Let us learn more about the law and how it functions so
    15+ min read
    Magnetization and Magnetic Intensity
    We've all had fun with magnets as kids. Some of us are now even playing with them! What makes them magnetic though? Why aren't there magnetic fields in all materials and substances? Have you ever given it any thought? The subjects of magnetization and magnetic intensity will be covered in this chapt
    6 min read

    CHAPTER 6 - ELECTROMAGNETIC INDUCTION

    Experiments of Faraday and Henry
    For a long time, electricity and magnetism were thought to be separate and unrelated phenomena. Experiments on electric current by Oersted, Ampere and a few others in the early decades of the nineteenth century established the fact that electricity and magnetism are inter-related. They discovered th
    5 min read
    Magnetic Flux
    Magnetic Flux is defined as the surface integral of the normal component of the Magnetic Field(B) propagating through that surface. It is indicated by φ or φB. Its SI unit is Weber(Wb). The study of Magnetic Flux is done in Electromagnetism which is a branch of physics that deals with the relation b
    6 min read
    Faraday’s Laws of Electromagnetic Induction
    Faraday's Law of Electromagnetic Induction is the basic law of electromagnetism that is used to explain the working of various equipment that includes an electric motor, electric generator, etc. Faraday's law was given by an English scientist Michael Faraday in 1831. According to Faraday's Law of El
    10 min read
    Lenz's Law
    Lenz law was given by the German scientist Emil Lenz in 1834 this law is based on the principle of conservation of energy and is in accordance with Newton's third law. Lenz law is used to give the direction of induced current in the circuit. In this article, let's learn about Lenz law its formula, e
    7 min read
    Motional Electromotive Force
    The process of induction occurs when a change in magnetic flux causes an emf to oppose that change. One of the main reasons for the induction process in motion. We can say, for example, that a magnet moving toward a coil generates an emf, and that a coil moving toward a magnet creates a comparable e
    14 min read
    Inductance - Definition, Derivation, Types, Examples
    Magnetism has a mystical quality about it. Its capacity to change metals like iron, cobalt, and nickel when touched piques children's interest. Repulsion and attraction between the magnetic poles by observing the shape of the magnetic field created by the iron filling surrounding the bar magnet will
    13 min read
    AC Generator - Principle, Construction, Working, Applications
    A changing magnetic flux produces a voltage or current in a conductor, which is known as electromagnetic induction. It can happen when a solenoid's magnetic flux is changed by moving a magnet. There will be no generated voltage (electrostatic potential difference) across an electrical wire if the ma
    7 min read

    CHAPTER 7 - ALTERNATING CURRENT

    AC Voltage Applied to a Resistor
    Alternating Currents are used almost as a standard by electricity distribution companies. In India, 50 Hz Alternating Current is used for domestic and industrial power supply. Many of our devices are in fact nothing but resistances. These resistances cause some voltage drop but since the voltage thi
    5 min read
    Phasors | Definition, Examples & Diagram
    Phasor analysis is used to determine the steady-state response to a linear circuit functioning on sinusoidal sources with frequency (f). It is very common. For example, one can use phasor analysis to differentiate the frequency response of a circuit by performing phasor analysis over a range of freq
    10 min read
    AC Voltage Applied to an Inductor
    Alternating Currents and Voltages vary and change their directions with time. They are widely used in modern-day devices and electrical systems because of their numerous advantages. Circuits in everyday life consist of resistances, capacitors, and inductances. Inductors are devices that store energy
    5 min read
    AC Voltage Applied to a Capacitor
    Alternating Currents and Voltages vary and change their directions with time. They are widely used in modern-day devices and electrical systems because of their numerous advantages. Circuits in everyday life consist of resistances, capacitors, and inductance. Capacitors are the devices that accumula
    6 min read
    Series LCR Circuits
    In contrast to direct current (DC), which travels solely in one direction, Alternating Current (AC) is an electric current that occasionally reverses direction and alters its magnitude constantly over time. Alternating current is the type of electricity that is delivered to companies and homes, and
    8 min read
    Power Factor in AC circuit
    The power factor is determined by the cosine of the phase angle between voltage and current. In AC circuits, the phase angle between voltage and current is aligned, or in other words, zero. But, practically there exists some phase difference between voltage and current. The value of the power factor
    8 min read
    Transformer
    A transformer is the simplest device that is used to transfer electrical energy from one alternating-current circuit to another circuit or multiple circuits, through the process of electromagnetic induction. A transformer works on the principle of electromagnetic induction to step up or step down th
    15+ min read

    CHAPTER 8 - ELECTROMAGNETIC WAVES

    Displacement Current
    Displacement current is the current that is produced by the rate of change of the electric displacement field. It differs from the normal current that is produced by the motion of the electric charge. Displacement current is the quantity explained in Maxwell's Equation. It is measured in Ampere. Dis
    12 min read
    Electromagnetic Waves
    A wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities that is commonly described by a wave equation in physics, mathematics, and related subjects. Electromagnetic waves are a mix of electric and magnetic field waves produced by moving charges. The origin of
    11 min read
    Electromagnetic Spectrum
    Electromagnetic Spectrum: The sun is our planet's principal source of energy, and its energy travels in the form of electromagnetic radiation. Electromagnetic energy moves across space at the speed of light in the form of waves of electric and magnetic fields with a range of frequencies or wavelengt
    11 min read

    CHAPTER 9 - RAY OPTICS AND OPTICAL INSTRUMENTS

    Spherical Mirrors
    Spherical mirrors are generally constructed from glass. A spherical surface is a part cut from a hollow sphere. This curved surface of the glass has a silver coating on one side and a polished surface on the other, where the reflection of light takes place. The term "convex mirror" refers to a mirro
    11 min read
    Refraction of Light
    Refraction is an important term used in the Ray Optics branch of Physics. Refraction of light is defined as the change in direction or the bending of a wave passing from one medium to another due to the change in speed of the wave. Some natural phenomena occurring in nature where refraction of light
    11 min read
    Total Internal Reflection
    In Physics, total internal reflection is the complete reflection of a light ray within the medium (air, water glass, etc). For example, the total internal reflection of rays of light takes place in a Diamond. Since Dimond has multiple reflecting surfaces through which the Total internal reflection t
    8 min read
    Image formation by Spherical Lenses
    You might have used a microscope in the science lab for magnifying the micro-size object. It basically magnifies tiny objects and we can see the enlarged image of that object. Telescopes are used by scientists to the planets and stars which are far- far away from the earth. You might see the spectac
    8 min read
    Dispersion of Light through a Prism
    Dispersion of Light happens when white light is split into its constituent hues due to refraction. Dispersion of Light can be achieved through various means but the most common way to achieve dispersion of light is through Prism. Dispersion of light by a prism results in the breaking of white light
    6 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences