Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Practice Bitwise Algorithms
  • MCQs on Bitwise Algorithms
  • Tutorial on Biwise Algorithms
  • Binary Representation
  • Bitwise Operators
  • Bit Swapping
  • Bit Manipulation
  • Count Set bits
  • Setting a Bit
  • Clear a Bit
  • Toggling a Bit
  • Left & Right Shift
  • Gray Code
  • Checking Power of 2
  • Important Tactics
  • Bit Manipulation for CP
  • Fast Exponentiation
Open In App
Next Article:
Find longest sequence of 1's in binary representation with one flip
Next article icon

Find the maximum subarray XOR in a given array

Last Updated : 17 Feb, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given an array of integers. The task is to find the maximum subarray XOR value in the given array.

Examples: 

Input: arr[] = {1, 2, 3, 4}
Output: 7
Explanation: The subarray {3, 4} has maximum XOR value

Input: arr[] = {8, 1, 2, 12, 7, 6}
Output: 15
Explanation: The subarray {1, 2, 12} has maximum XOR value

Input: arr[] = {4, 6}
Output: 6
Explanation: The subarray {6} has maximum XOR value

Recommended Practice
Maximum XOR subarray
Try It!

Naive Approach: Below is the idea to solve the problem:

Create all possible subarrays and calculate the XOR of the subarrays. The maximum among them will be the required answer.

Follow the steps mentioned below to implement the idea:

  • Iterate from i  = 0 to N-1:
    • Initialize a variable (say curr_xor = 0) to store the XOR value of subarrays starting from i
    • Run a nested loop from j =  i to N-1:
      • The value j determines the ending point for the current subarray starting from i.
      • Update curr_xor by performing XOR of curr_xor with arr[j].
      • If the value is greater than the maximum then update the maximum value also.
  • The maximum value is the required answer.

Below is the Implementation of the above approach:

C++




// A simple C++ program to find max subarray XOR
#include<bits/stdc++.h>
using namespace std;
 
int maxSubarrayXOR(int arr[], int n)
{
    int ans = INT_MIN;     // Initialize result
 
    // Pick starting points of subarrays
    for (int i=0; i<n; i++)
    {
        int curr_xor = 0; // to store xor of current subarray
 
        // Pick ending points of subarrays starting with i
        for (int j=i; j<n; j++)
        {
            curr_xor = curr_xor ^ arr[j];
            ans = max(ans, curr_xor);
        }
    }
    return ans;
}
 
// Driver program to test above functions
int main()
{
    int arr[] = {8, 1, 2, 12};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n);
    return 0;
}
 
 

Java




// A simple Java program to find max subarray XOR
class GFG {
    static int maxSubarrayXOR(int arr[], int n)
    {
        int ans = Integer.MIN_VALUE; // Initialize result
      
        // Pick starting points of subarrays
        for (int i=0; i<n; i++)
        {
                // to store xor of current subarray  
            int curr_xor = 0;
      
            // Pick ending points of subarrays starting with i
            for (int j=i; j<n; j++)
            {
                curr_xor = curr_xor ^ arr[j];
                ans = Math.max(ans, curr_xor);
            }
        }
        return ans;
    }
      
    // Driver program to test above functions
    public static void main(String args[])
    {
        int arr[] = {8, 1, 2, 12};
        int n = arr.length;
        System.out.println("Max subarray XOR is " +
                                 maxSubarrayXOR(arr, n));
    }
}
//This code is contributed by Sumit Ghosh
 
 

Python3




# A simple Python program
# to find max subarray XOR
 
def maxSubarrayXOR(arr,n):
 
    ans = -2147483648     #Initialize result
  
    # Pick starting points of subarrays
    for i in range(n):
         
        # to store xor of current subarray
        curr_xor = 0
  
        # Pick ending points of
        # subarrays starting with i
        for j in range(i,n):
         
            curr_xor = curr_xor ^ arr[j]
            ans = max(ans, curr_xor)
         
     
    return ans
 
 
# Driver code
 
arr = [8, 1, 2, 12]
n = len(arr)
 
print("Max subarray XOR is ",
     maxSubarrayXOR(arr, n))
 
# This code is contributed
# by Anant Agarwal.
 
 

C#




// A simple C# program to find
// max subarray XOR
using System;
 
class GFG
{
     
    // Function to find max subarray
    static int maxSubarrayXOR(int []arr, int n)
    {
        int ans = int.MinValue;
        // Initialize result
     
        // Pick starting points of subarrays
        for (int i = 0; i < n; i++)
        {
            // to store xor of current subarray
            int curr_xor = 0;
     
            // Pick ending points of
            // subarrays starting with i
            for (int j = i; j < n; j++)
            {
                curr_xor = curr_xor ^ arr[j];
                ans = Math.Max(ans, curr_xor);
            }
        }
        return ans;
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = {8, 1, 2, 12};
        int n = arr.Length;
        Console.WriteLine("Max subarray XOR is " +
                           maxSubarrayXOR(arr, n));
    }
}
 
// This code is contributed by Sam007.
 
 

PHP




<?php
// A simple PHP program to
// find max subarray XOR
 
function maxSubarrayXOR($arr, $n)
{
     
    // Initialize result
    $ans = PHP_INT_MIN;
 
    // Pick starting points
    // of subarrays
    for ($i = 0; $i < $n; $i++)
    {
        // to store xor of
        // current subarray
        $curr_xor = 0;
 
        // Pick ending points of
        // subarrays starting with i
        for ($j = $i; $j < $n; $j++)
        {
            $curr_xor = $curr_xor ^ $arr[$j];
            $ans = max($ans, $curr_xor);
        }
    }
    return $ans;
}
 
    // Driver Code
    $arr = array(8, 1, 2, 12);
    $n = count($arr);
    echo "Max subarray XOR is "
         , maxSubarrayXOR($arr, $n);
          
// This code is contributed by anuj_67.
?>
 
 

Javascript




<script>
 
// A simple Javascript program to find
// max subarray XOR
function maxSubarrayXOR(arr, n)
{
     
    // Initialize result
    let ans = Number.MIN_VALUE;  
     
    // Pick starting points of subarrays
    for(let i = 0; i < n; i++)
    {
         
        // To store xor of current subarray
        let curr_xor = 0;
 
        // Pick ending points of subarrays
        // starting with i
        for(let j = i; j < n; j++)
        {
            curr_xor = curr_xor ^ arr[j];
            ans = Math.max(ans, curr_xor);
        }
    }
    return ans;
}
 
// Driver code
let arr = [ 8, 1, 2, 12 ];
let n = arr.length;
 
document.write("Max subarray XOR is " +
               maxSubarrayXOR(arr, n));
                
// This code is contributed by divyesh072019
 
</script>
 
 
Output
Max subarray XOR is 15

Time Complexity: O(N2).
Auxiliary Space: O(1)

Find the maximum subarray XOR in a given array using trie Data Structure.

Maximize the xor subarray by using trie data structure to find the binary inverse of current prefix xor inorder to set the left most unset bits and maximize the value.

Follow the below steps to Implement the idea:

  • Create an empty Trie. Every node of Trie is going to contain two children, for 0 and 1 values of a bit.
  • Initialize pre_xor = 0 and insert into the Trie, Initialize result = INT_MIN
  • Traverse the given array and do the following for every array element arr[i].
    • pre_xor  = pre_xor  ^ arr[i], pre_xor now contains xor of elements from arr[0] to arr[i].
    • Query the maximum xor value ending with arr[i] from Trie.
    • Update the result if the value obtained above is more than the current value of the result.

Illustration:

It can be observed from the above algorithm that we build a Trie that contains XOR of all prefixes of given array. To find the maximum XOR subarray ending with arr[i], there may be two cases. 

  • The prefix itself has the maximum XOR value ending with arr[i]. For example if i=2 in {8, 2, 1, 12}, then the maximum subarray xor ending with arr[2] is the whole prefix. 
  • Remove some prefix (ending at index from 0 to i-1). For example if i=3 in {8, 2, 1, 12}, then the maximum subarray xor ending with arr[3] starts with arr[1] and we need to remove arr[0].
  • To find the prefix to be removed, find the entry in Trie that has maximum XOR value with current prefix. If we do XOR of such previous prefix with current prefix, get the maximum XOR value ending with arr[i]. 
  • If there is no prefix to be removed (case i), then we return 0 (that’s why we inserted 0 in Trie). 

Below is the implementation of the above idea :

C++




// C++ program for a Trie based O(n) solution to find max
// subarray XOR
#include<bits/stdc++.h>
using namespace std;
 
// Assumed int size
#define INT_SIZE 32
 
// A Trie Node
struct TrieNode
{
    int value;  // Only used in leaf nodes
    TrieNode *arr[2];
};
 
// Utility function to create a Trie node
TrieNode *newNode()
{
    TrieNode *temp = new TrieNode;
    temp->value = 0;
    temp->arr[0] = temp->arr[1] = NULL;
    return temp;
}
 
// Inserts pre_xor to trie with given root
void insert(TrieNode *root, int pre_xor)
{
    TrieNode *temp = root;
 
    // Start from the msb, insert all bits of
    // pre_xor into Trie
    for (int i=INT_SIZE-1; i>=0; i--)
    {
        // Find current bit in given prefix
        bool val = pre_xor & (1<<i);
 
        // Create a new node if needed
        if (temp->arr[val] == NULL)
            temp->arr[val] = newNode();
 
        temp = temp->arr[val];
    }
 
    // Store value at leaf node
    temp->value = pre_xor;
}
 
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this maximum
// with pre_xor which is maximum XOR ending with last element
// of pre_xor.
int query(TrieNode *root, int pre_xor)
{
    TrieNode *temp = root;
    for (int i=INT_SIZE-1; i>=0; i--)
    {
        // Find current bit in given prefix
        bool val = pre_xor & (1<<i);
 
        // Traverse Trie, first look for a
        // prefix that has opposite bit
        if (temp->arr[1-val]!=NULL)
            temp = temp->arr[1-val];
 
        // If there is no prefix with opposite
        // bit, then look for same bit.
        else if (temp->arr[val] != NULL)
            temp = temp->arr[val];
    }
    return pre_xor^(temp->value);
}
 
// Returns maximum XOR value of a subarray in arr[0..n-1]
int maxSubarrayXOR(int arr[], int n)
{
    // Create a Trie and insert 0 into it
    TrieNode *root = newNode();
    insert(root, 0);
 
    // Initialize answer and xor of current prefix
    int result = INT_MIN, pre_xor =0;
 
    // Traverse all input array element
    for (int i=0; i<n; i++)
    {
        // update current prefix xor and insert it into Trie
        pre_xor = pre_xor^arr[i];
        insert(root, pre_xor);
 
        // Query for current prefix xor in Trie and update
        // result if required
        result = max(result, query(root, pre_xor));
    }
    return result;
}
 
// Driver program to test above functions
int main()
{
    int arr[] = {8, 1, 2, 12};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n);
    return 0;
}
 
 

Java




// Java program for a Trie based O(n) solution to
// find max subarray XOR
class GFG
{
    // Assumed int size
    static final int INT_SIZE = 32;
      
    // A Trie Node
    static class TrieNode
    {
        int value;  // Only used in leaf nodes
        TrieNode[] arr =  new TrieNode[2];
        public TrieNode() {
            value = 0;
            arr[0] = null;
            arr[1] = null;
        }
    }
    static TrieNode root;
     
    // Inserts pre_xor to trie with given root
    static void insert(int pre_xor)
    {
        TrieNode temp = root;
      
        // Start from the msb, insert all bits of
        // pre_xor into Trie
        for (int i=INT_SIZE-1; i>=0; i--)
        {
            // Find current bit in given prefix
            int val = (pre_xor & (1<<i)) >=1 ? 1 : 0;
      
            // Create a new node if needed
            if (temp.arr[val] == null)
                temp.arr[val] = new TrieNode();
      
            temp = temp.arr[val];
        }
      
        // Store value at leaf node
        temp.value = pre_xor;
    }
      
    // Finds the maximum XOR ending with last number in
    // prefix XOR 'pre_xor' and returns the XOR of this
    // maximum with pre_xor which is maximum XOR ending
    // with last element of pre_xor.
    static int query(int pre_xor)
    {
        TrieNode temp = root;
        for (int i=INT_SIZE-1; i>=0; i--)
        {
            // Find current bit in given prefix
            int val = (pre_xor & (1<<i)) >= 1 ? 1 : 0;
      
            // Traverse Trie, first look for a
            // prefix that has opposite bit
            if (temp.arr[1-val] != null)
                temp = temp.arr[1-val];
      
            // If there is no prefix with opposite
            // bit, then look for same bit.
            else if (temp.arr[val] != null)
                temp = temp.arr[val];
        }
        return pre_xor^(temp.value);
    }
      
    // Returns maximum XOR value of a subarray in
        // arr[0..n-1]
    static int maxSubarrayXOR(int arr[], int n)
    {
        // Create a Trie and insert 0 into it
        root = new TrieNode();
        insert(0);
      
        // Initialize answer and xor of current prefix
        int result = Integer.MIN_VALUE;
        int pre_xor =0;
      
        // Traverse all input array element
        for (int i=0; i<n; i++)
        {
            // update current prefix xor and insert it
                // into Trie
            pre_xor = pre_xor^arr[i];
            insert(pre_xor);
      
            // Query for current prefix xor in Trie and
            // update result if required
            result = Math.max(result, query(pre_xor));
 
        }
        return result;
    }
      
    // Driver program to test above functions
    public static void main(String args[])
    {
        int arr[] = {8, 1, 2, 12};
        int n = arr.length;
        System.out.println("Max subarray XOR is " +
                                 maxSubarrayXOR(arr, n));
    }
}
// This code is contributed by Sumit Ghosh
 
 

Python3




"""Python implementation for a Trie based solution
to find max subArray XOR"""
 
# Structure of Trie Node
class Node:
 
    def __init__(self, data):
 
        self.data = data
         
        # left node for 0
        self.left = None
         
        # right node for 1
        self.right = None
 
# Class for implementing Trie
class Trie:
 
    def __init__(self):
 
        self.root = Node(0)
 
    # Insert pre_xor to trie with given root
    def insert(self, pre_xor):
 
        self.temp = self.root
 
        # Start from msb, insert all bits of pre_xor
        # into the Trie
        for i in range(31, -1, -1):
 
            # Find current bit in prefix sum
            val = pre_xor & (1<<i)
 
            if val :
                 
                # Create new node if needed
                if not self.temp.right:
                    self.temp.right = Node(0)
                self.temp = self.temp.right
 
            if not val:
                 
                # Create new node if needed
                if not self.temp.left:
                    self.temp.left = Node(0)
                self.temp = self.temp.left
 
        # Store value at leaf node
        self.temp.data = pre_xor
 
    # Find the maximum xor ending with last number
    # in prefix XOR and return the XOR of this
    def query(self, xor):
 
        self.temp = self.root
 
        for i in range(31, -1, -1):
 
            # Find the current bit in prefix xor
            val = xor & (1<<i)
 
            # Traverse the trie, first look for opposite bit
            # and then look for same bit
            if val:
                if self.temp.left:
                    self.temp = self.temp.left
                elif self.temp.right:
                    self.temp = self.temp.right
            else:
                if self.temp.right:
                    self.temp = self.temp.right
                elif self.temp.left:
                    self.temp = self.temp.left
 
        return xor ^ self.temp.data
 
    # Returns maximum XOR value of subarray
    def maxSubArrayXOR(self, n, Arr):
 
        # Insert 0 in the trie
        self.insert(0)
 
        # Initialize result and pre_xor
        result = -float('inf')
        pre_xor = 0
 
        # Traverse all input array element
        for i in range(n):
 
            # Update current prefix xor and
            # insert it into Trie
            pre_xor = pre_xor ^ Arr[i]
            self.insert(pre_xor)
 
            # Query for current prefix xor
            # in Trie and update result
            result = max(result, self.query(pre_xor))
 
        return result
 
# Driver code
if __name__ == "__main__":
 
    Arr = [8, 1, 2, 12]
    n = len(Arr)
    trie = Trie()
    print("Max subarray XOR is", end = ' ')
    print(trie.maxSubArrayXOR(n, Arr))
 
# This code is contributed by chaudhary_19
 
 

C#




using System;
 
// C# program for a Trie based O(n) solution to 
// find max subarray XOR
public class GFG
{
    // Assumed int size
    public const int INT_SIZE = 32;
 
    // A Trie Node
    public class TrieNode
    {
        public int value; // Only used in leaf nodes
        public TrieNode[] arr = new TrieNode[2];
        public TrieNode()
        {
            value = 0;
            arr[0] = null;
            arr[1] = null;
        }
    }
    public static TrieNode root;
 
    // Inserts pre_xor to trie with given root
    public static void insert(int pre_xor)
    {
        TrieNode temp = root;
 
        // Start from the msb, insert all bits of
        // pre_xor into Trie
        for (int i = INT_SIZE-1; i >= 0; i--)
        {
            // Find current bit in given prefix
            int val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
 
            // Create a new node if needed
            if (temp.arr[val] == null)
            {
                temp.arr[val] = new TrieNode();
            }
 
            temp = temp.arr[val];
        }
 
        // Store value at leaf node
        temp.value = pre_xor;
    }
 
    // Finds the maximum XOR ending with last number in
    // prefix XOR 'pre_xor' and returns the XOR of this 
    // maximum with pre_xor which is maximum XOR ending 
    // with last element of pre_xor.
    public static int query(int pre_xor)
    {
        TrieNode temp = root;
        for (int i = INT_SIZE-1; i >= 0; i--)
        {
            // Find current bit in given prefix
            int val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
 
            // Traverse Trie, first look for a
            // prefix that has opposite bit
            if (temp.arr[1 - val] != null)
            {
                temp = temp.arr[1 - val];
            }
 
            // If there is no prefix with opposite
            // bit, then look for same bit.
            else if (temp.arr[val] != null)
            {
                temp = temp.arr[val];
            }
        }
        return pre_xor ^ (temp.value);
    }
 
    // Returns maximum XOR value of a subarray in 
        // arr[0..n-1]
    public static int maxSubarrayXOR(int[] arr, int n)
    {
        // Create a Trie and insert 0 into it
        root = new TrieNode();
        insert(0);
 
        // Initialize answer and xor of current prefix
        int result = int.MinValue;
        int pre_xor = 0;
 
        // Traverse all input array element
        for (int i = 0; i < n; i++)
        {
            // update current prefix xor and insert it 
                // into Trie
            pre_xor = pre_xor ^ arr[i];
            insert(pre_xor);
 
            // Query for current prefix xor in Trie and 
            // update result if required
            result = Math.Max(result, query(pre_xor));
 
        }
        return result;
    }
 
    // Driver program to test above functions
    public static void Main(string[] args)
    {
        int[] arr = new int[] {8, 1, 2, 12};
        int n = arr.Length;
        Console.WriteLine("Max subarray XOR is " + maxSubarrayXOR(arr, n));
    }
}
 
  // This code is contributed by Shrikant13
 
 

Javascript




// JavaScript program for a Trie based O(n) solution to find max subarray XOR
 
// Assumed int size
const INT_SIZE = 32;
 
// A Trie Node
class TrieNode {
  constructor() {
    this.value = 0; // Only used in leaf nodes
    this.arr = [null, null];
  }
}
 
let root;
 
// Inserts pre_xor to trie with given root
function insert(pre_xor) {
  let temp = root;
 
  // Start from the msb, insert all bits of
  // pre_xor into Trie
  for (let i = INT_SIZE - 1; i >= 0; i--) {
    // Find current bit in given prefix
    let val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
 
    // Create a new node if needed
    if (temp.arr[val] === null) {
      temp.arr[val] = new TrieNode();
    }
 
    temp = temp.arr[val];
  }
 
  // Store value at leaf node
  temp.value = pre_xor;
}
 
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this
// maximum with pre_xor which is maximum XOR ending
// with last element of pre_xor.
function query(pre_xor) {
  let temp = root;
  for (let i = INT_SIZE - 1; i >= 0; i--) {
    // Find current bit in given prefix
    let val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
 
    // Traverse Trie, first look for a
    // prefix that has opposite bit
    if (temp.arr[1 - val] !== null) {
      temp = temp.arr[1 - val];
    }
 
    // If there is no prefix with opposite
    // bit, then look for same bit.
    else if (temp.arr[val] !== null) {
      temp = temp.arr[val];
    }
  }
  return pre_xor ^ temp.value;
}
 
// Returns maximum XOR value of a subarray in arr[0..n-1]
function maxSubarrayXOR(arr, n) {
  // Create a Trie and insert 0 into it
  root = new TrieNode();
  insert(0);
 
  // Initialize answer and xor of current prefix
  let result = Number.MIN_SAFE_INTEGER;
  let pre_xor = 0;
 
  // Traverse all input array element
  for (let i = 0; i < n; i++) {
    // update current prefix xor and insert it
    // into Trie
    pre_xor ^= arr[i];
    insert(pre_xor);
 
    // Query for current prefix xor in Trie and
    // update result if required
    result = Math.max(result, query(pre_xor));
  }
  return result;
}
 
// Driver program to test above functions
let arr = [8, 1, 2, 12];
let n = arr.length;
console.log("Max subarray XOR is " + maxSubarrayXOR(arr, n));
 
 
Output
Max subarray XOR is 15

Time Complexity: O(N).
Auxiliary Space: O(N)

Exercise: Extend the above solution so that it also prints starting and ending indexes of subarray with maximum value (Hint: we can add one more field to Trie node to achieve this 



Next Article
Find longest sequence of 1's in binary representation with one flip

A

Aarti_Rathi and Romil Punetha
Improve
Article Tags :
  • Advanced Data Structure
  • Bit Magic
  • DSA
  • Strings
  • Bitwise-XOR
Practice Tags :
  • Advanced Data Structure
  • Bit Magic
  • Strings

Similar Reads

  • Bitwise Algorithms
    Bitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift. BasicsIntroduction to Bitwise Algori
    4 min read
  • Introduction to Bitwise Algorithms - Data Structures and Algorithms Tutorial
    Bit stands for binary digit. A bit is the basic unit of information and can only have one of two possible values that is 0 or 1. In our world, we usually with numbers using the decimal base. In other words. we use the digit 0 to 9 However, there are other number representations that can be quite use
    15+ min read
  • Bitwise Operators in C
    In C, bitwise operators are used to perform operations directly on the binary representations of numbers. These operators work by manipulating individual bits (0s and 1s) in a number. The following 6 operators are bitwise operators (also known as bit operators as they work at the bit-level). They ar
    6 min read
  • Bitwise Operators in Java
    In Java, Operators are special symbols that perform specific operations on one or more than one operands. They build the foundation for any type of calculation or logic in programming. There are so many operators in Java, among all, bitwise operators are used to perform operations at the bit level.
    6 min read
  • Python Bitwise Operators
    Python bitwise operators are used to perform bitwise calculations on integers. The integers are first converted into binary and then operations are performed on each bit or corresponding pair of bits, hence the name bitwise operators. The result is then returned in decimal format. Note: Python bitwi
    6 min read
  • JavaScript Bitwise Operators
    In JavaScript, a number is stored as a 64-bit floating-point number but bitwise operations are performed on a 32-bit binary number. To perform a bit-operation, JavaScript converts the number into a 32-bit binary number (signed) and performs the operation and converts back the result to a 64-bit numb
    5 min read
  • All about Bit Manipulation
    Bit Manipulation is a technique used in a variety of problems to get the solution in an optimized way. This technique is very effective from a Competitive Programming point of view. It is all about Bitwise Operators which directly works upon binary numbers or bits of numbers that help the implementa
    14 min read
  • What is Endianness? Big-Endian & Little-Endian
    Computers operate using binary code, a language made up of 0s and 1s. This binary code forms the foundation of all computer operations, enabling everything from rendering videos to processing complex algorithms. A single bit is a 0 or a 1, and eight bits make up a byte. While some data, such as cert
    5 min read
  • Bits manipulation (Important tactics)
    Prerequisites: Bitwise operators in C, Bitwise Hacks for Competitive Programming, Bit Tricks for Competitive Programming Table of Contents Compute XOR from 1 to n (direct method)Count of numbers (x) smaller than or equal to n such that n+x = n^xHow to know if a number is a power of 2?Find XOR of all
    15+ min read
  • Easy Problems on Bit Manipulations and Bitwise Algorithms

    • Binary representation of a given number
      Given an integer n, the task is to print the binary representation of the number. Note: The given number will be maximum of 32 bits, so append 0's to the left if the result string is smaller than 30 length. Examples: Input: n = 2Output: 00000000000000000000000000000010 Input: n = 0Output: 0000000000
      6 min read

    • Count set bits in an integer
      Write an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bits Input : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits [Naive Approach] - One by One Counting
      15+ min read

    • Add two bit strings
      Given two binary strings s1 and s2 consisting of only 0s and 1s. Find the resultant string after adding the two Binary Strings.Note: The input strings may contain leading zeros but the output string should not have any leading zeros. Examples: Input: s1 = "1101", s2 = "111"Output: 10100Explanation:
      2 min read

    • Turn off the rightmost set bit
      Given an integer n, turn remove turn off the rightmost set bit in it. Input: 12Output: 8Explanation : Binary representation of 12 is 00...01100. If we turn of the rightmost set bit, we get 00...01000 which is binary representation of 8 Input: 7 Output: 6 Explanation : Binary representation for 7 is
      7 min read

    • Rotate bits of a number
      Given a 32-bit integer n and an integer d, rotate the binary representation of n by d positions in both left and right directions. After each rotation, convert the result back to its decimal representation and return both values in an array as [left rotation, right rotation].Note: A rotation (or cir
      7 min read

    • Compute modulus division by a power-of-2-number
      Given two numbers n and d where d is a power of 2 number, the task is to perform n modulo d without the division and modulo operators. Input: 6 4Output: 2 Explanation: As 6%4 = 2Input: 12 8Output: 4Explanation: As 12%8 = 4Input: 10 2Output: 0Explanation: As 10%2 = 0 Approach: The idea is to leverage
      3 min read

    • Find the Number Occurring Odd Number of Times
      Given an array of positive integers. All numbers occur an even number of times except one number which occurs an odd number of times. Find the number in O(n) time & constant space. Examples : Input : arr = {1, 2, 3, 2, 3, 1, 3}Output : 3 Input : arr = {5, 7, 2, 7, 5, 2, 5}Output : 5 Recommended
      12 min read

    • Program to find whether a given number is power of 2
      Given a positive integer n, the task is to find if it is a power of 2 or not. Examples: Input : n = 16Output : YesExplanation: 24 = 16 Input : n = 42Output : NoExplanation: 42 is not a power of 2 Input : n = 1Output : YesExplanation: 20 = 1 Approach 1: Using Log - O(1) time and O(1) spaceThe idea is
      12 min read

    • Find position of the only set bit
      Given a number n containing only 1 set bit in its binary representation, the task is to find the position of the only set bit. If there are 0 or more than 1 set bits, then return -1. Note: Position of set bit '1' should be counted starting with 1 from the LSB side in the binary representation of the
      8 min read

    • Check for Integer Overflow
      Given two integers a and b. The task is to design a function that adds two integers and detects overflow during the addition. If the sum does not cause an overflow, return their sum. Otherwise, return -1 to indicate an overflow.Note: You cannot use type casting to a larger data type to check for ove
      7 min read

    • Find XOR of two number without using XOR operator
      Given two integers, the task is to find XOR of them without using the XOR operator. Examples : Input: x = 1, y = 2Output: 3 Input: x = 3, y = 5Output: 6 Approach - Checking each bit - O(log n) time and O(1) spaceA Simple Solution is to traverse all bits one by one. For every pair of bits, check if b
      9 min read

    • Check if two numbers are equal without using arithmetic and comparison operators
      Given two numbers, the task is to check if two numbers are equal without using Arithmetic and Comparison Operators or String functions. Method 1 : The idea is to use XOR operator. XOR of two numbers is 0 if the numbers are the same, otherwise non-zero. C/C++ Code // C++ program to check if two numbe
      8 min read

    • Detect if two integers have opposite signs
      Given two integers a and b, the task is to determine whether they have opposite signs. Return true if the signs of the two numbers are different and false otherwise. Examples: Input: a = -5, b = 10Output: trueExplanation: One number is negative and the other is positive, so their signs are different
      9 min read

    • Swap Two Numbers Without Using Third Variable
      Given two variables a and y, swap two variables without using a third variable. Examples: Input: a = 2, b = 3Output: a = 3, b = 2 Input: a = 20, b = 0Output: a = 0, b = 20 Input: a = 10, b = 10Output: a = 10, b = 10 Table of Content Using Arithmetic OperatorsUsing Bitwise XORBuilt-in SwapUsing Arith
      6 min read

    • Russian Peasant (Multiply two numbers using bitwise operators)
      Given two integers a and b, the task is to multiply them without using the multiplication operator. Instead of that, use the Russian Peasant Algorithm. Examples: Input: a = 2, b = 5Output: 10Explanation: Product of 2 and 5 is 10. Input: a = 6, b = 9Output: 54Explanation: Product of 6 and 9 is 54. In
      4 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences