Find sum of even factors of a number
Last Updated : 25 Oct, 2022
Given a number n, the task is to find the even factor sum of a number.
Examples:
Input : 30 Output : 48 Even dividers sum 2 + 6 + 10 + 30 = 48 Input : 18 Output : 26 Even dividers sum 2 + 6 + 18 = 26
Prerequisite : Sum of factors
As discussed in above mentioned previous post, sum of factors of a number is
Let p1, p2, … pk be prime factors of n. Let a1, a2, .. ak be highest powers of p1, p2, .. pk respectively that divide n, i.e., we can write n as n = (p1a1)*(p2a2)* … (pkak).
Sum of divisors = (1 + p1 + p12 ... p1a1) * (1 + p2 + p22 ... p2a2) * ........................... (1 + pk + pk2 ... pkak)
If number is odd, then there are no even factors, so we simply return 0.
If number is even, we use above formula. We only need to ignore 20. All other terms multiply to produce even factor sum. For example, consider n = 18. It can be written as 2132 and sum of all factors is (20 + 21)*(30 + 31 + 32). if we remove 20 then we get the
Sum of even factors (2)*(1+3+32) = 26.
To remove odd number in even factor, we ignore then 20 which is 1. After this step, we only get even factors. Note that 2 is the only even prime.
Below is the implementation of the above approach.
C++ // Formula based CPP program to find sum of all // divisors of n. #include <bits/stdc++.h> using namespace std; // Returns sum of all factors of n. int sumofFactors(int n) { // If n is odd, then there are no even factors. if (n % 2 != 0) return 0; // Traversing through all prime factors. int res = 1; for (int i = 2; i <= sqrt(n); i++) { // While i divides n, print i and divide n int count = 0, curr_sum = 1, curr_term = 1; while (n % i == 0) { count++; n = n / i; // here we remove the 2^0 that is 1. All // other factors if (i == 2 && count == 1) curr_sum = 0; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to handle the case when n // is a prime number. if (n >= 2) res *= (1 + n); return res; } // Driver code int main() { int n = 18; cout << sumofFactors(n); return 0; }
Java // Formula based Java program to // find sum of all divisors of n. import java.util.*; import java.lang.*; public class GfG{ // Returns sum of all factors of n. public static int sumofFactors(int n) { // If n is odd, then there // are no even factors. if (n % 2 != 0) return 0; // Traversing through all prime // factors. int res = 1; for (int i = 2; i <= Math.sqrt(n); i++) { int count = 0, curr_sum = 1; int curr_term = 1; // While i divides n, print i and // divide n while (n % i == 0) { count++; n = n / i; // here we remove the 2^0 that // is 1. All other factors if (i == 2 && count == 1) curr_sum = 0; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to handle the // case when n is a prime number. if (n >= 2) res *= (1 + n); return res; } // Driver function public static void main(String argc[]){ int n = 18; System.out.println(sumofFactors(n)); } } /* This code is contributed by Sagar Shukla */
Python3 # Formula based Python3 # program to find sum # of alldivisors of n. import math # Returns sum of all # factors of n. def sumofFactors(n) : # If n is odd, then # there are no even # factors. if (n % 2 != 0) : return 0 # Traversing through # all prime factors. res = 1 for i in range(2, (int)(math.sqrt(n)) + 1) : # While i divides n # print i and divide n count = 0 curr_sum = 1 curr_term = 1 while (n % i == 0) : count= count + 1 n = n // i # here we remove the # 2^0 that is 1. All # other factors if (i == 2 and count == 1) : curr_sum = 0 curr_term = curr_term * i curr_sum = curr_sum + curr_term res = res * curr_sum # This condition is to # handle the case when # n is a prime number. if (n >= 2) : res = res * (1 + n) return res # Driver code n = 18 print(sumofFactors(n)) # This code is contributed by Nikita Tiwari.
C# // Formula based C# program to // find sum of all divisors of n. using System; public class GfG { // Returns sum of all factors of n. public static int sumofFactors(int n) { // If n is odd, then there // are no even factors. if (n % 2 != 0) return 0; // Traversing through all prime factors. int res = 1; for (int i = 2; i <= Math.Sqrt(n); i++) { int count = 0, curr_sum = 1; int curr_term = 1; // While i divides n, print i // and divide n while (n % i == 0) { count++; n = n / i; // here we remove the 2^0 that // is 1. All other factors if (i == 2 && count == 1) curr_sum = 0; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to handle the // case when n is a prime number. if (n >= 2) res *= (1 + n); return res; } // Driver Code public static void Main() { int n = 18; Console.WriteLine(sumofFactors(n)); } } // This code is contributed by vt_m
PHP <?php // Formula based php program to find sum // of all divisors of n. // Returns sum of all factors of n. function sumofFactors($n) { // If n is odd, then there are no // even factors. if ($n % 2 != 0) return 0; // Traversing through all prime factors. $res = 1; for ($i = 2; $i <= sqrt($n); $i++) { // While i divides n, print i // and divide n $count = 0; $curr_sum = 1; $curr_term = 1; while ($n % $i == 0) { $count++; $n = floor($n / $i); // here we remove the 2^0 // that is 1. All other // factors if ($i == 2 && $count == 1) $curr_sum = 0; $curr_term *= $i; $curr_sum += $curr_term; } $res *= $curr_sum; } // This condition is to handle the // case when n is a prime number. if ($n >= 2) $res *= (1 + $n); return $res; } // Driver code $n = 18; echo sumofFactors($n); // This code is contributed by mits ?>
JavaScript <script> // javascript program to // find sum of all divisors of n. // Returns sum of all factors of n. function sumofFactors(n) { // If n is odd, then there // are no even factors. if (n % 2 != 0) return 0; // Traversing through all prime // factors. let res = 1; for (let i = 2; i <= Math.sqrt(n); i++) { let count = 0, curr_sum = 1; let curr_term = 1; // While i divides n, print i and // divide n while (n % i == 0) { count++; n = n / i; // here we remove the 2^0 that // is 1. All other factors if (i == 2 && count == 1) curr_sum = 0; curr_term *= i; curr_sum += curr_term; } res *= curr_sum; } // This condition is to handle the // case when n is a prime number. if (n >= 2) res *= (1 + n); return res; } // Driver Function let n = 18; document.write(sumofFactors(n)); // This code is contributed by susmitakundugoaldanga. </script>
Output:
26
Time Complexity: O(?n log n)
Auxiliary Space: O(1)
Please suggest if someone has a better solution which is more efficient in terms of space and time.
Similar Reads
Find sum of odd factors of a number Given a number n, the task is to find the odd factor sum.Examples : Input : n = 30Output : 24Odd dividers sum 1 + 3 + 5 + 15 = 24 Input : 18Output : 13Odd dividers sum 1 + 3 + 9 = 13 Approach :- Naive approach in o(n) time complexity The first approach involves iterating over all factors of the give
10 min read
Sum of all even factors of numbers in the range [l, r] Given a range [l, r], the task is to find the sum of all the even factors of the numbers from the given range.Examples: Input: l = 6, r = 8 Output: 22 factors(6) = 1, 2, 3, 6, evenfactors(6) = 2, 6 sumEvenFactors(6) = 2 + 6 = 8 factors(7) = 1, 7, No even factors factors(8) = 1, 2, 4, 8, evenfactors(
15+ min read
Sum of all the factors of a number Given a number n, the task is to find the sum of all the factors.Examples : Input : n = 30 Output : 72 Dividers sum 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 = 72 Input : n = 15 Output : 24 Dividers sum 1 + 3 + 5 + 15 = 24 Recommended PracticeFactors SumTry It! A simple solution is to traverse through all di
12 min read
Greatest odd factor of an even number Given an even number N, the task is to find the greatest possible odd factor of N. Examples: Input: N = 8642 Output: 4321 Explanation: Here, factors of 8642 are {1, 8642, 2, 4321, 29, 298, 58, 149} in which odd factors are {1, 4321, 29, 149} and the greatest odd factor among all odd factors is 4321.
4 min read
Perfect Square factors of a Number Given an integer N, the task is to find the number of factors of N which are a perfect square. Examples: Input: N = 100 Output: 4 Explanation: There are four factors of 100 (1, 4, 25, 100) that are perfect square.Input: N = 900 Output: 8 Explanation: There are eight factors of 900 (1, 4, 9, 25, 36,
10 min read