Find maximum vertical sum in binary tree
Last Updated : 02 May, 2025
Given a binary tree, find the maximum vertical level sum in binary tree.
Examples:
Input :
3
/ \
4 6
/ \ / \
-1 -2 5 10
\
8
Output : 14
Vertical level having nodes 6 and 8 has maximum
vertical sum 14.
Input :
1
/ \
5 8
/ \ \
2 -6 3
\ /
-1 -4
\
9
Output : 4
A simple solution is to first find vertical level sum of each level starting from minimum vertical level to maximum vertical level. Finding sum of one vertical level takes O(n) time. In worst case time complexity of this solution is O(n^2).
An efficient solution is to do level order traversal of given binary tree and update vertical level sum of each level while doing the traversal. After finding vertical sum of each level find maximum vertical sum from these values.
Steps to solve this problem:
1. Check if root is equal to null than return 0.
2. Declare an unordered map versum of integer key and value.
3. Declare variables maxsum=INT_MIN and curlev.
4. Declare a queue pair q of node* and integer.
5. Push (root,0) in q.
6. While q is not empty:
*Root= q.front().first.
*Curlev=q.front().second.
*Versum[curlev]+=root->data.
*Check if root->left is not null than push (root->left,curlev-1) in q.
*Check if root->right is not null than push (root->right,curlev+1) in q.
7. Iterate through every pair in versum as it:
*Update maxsum as max(maxsum,it.second).
8. Return maxsum.
Below is the implementation of above approach:
C++ // C++ program to find maximum vertical // sum in binary tree. #include <bits/stdc++.h> using namespace std; // A Binary Tree Node struct Node { int data; struct Node *left, *right; }; // A utility function to create a new // Binary Tree Node struct Node* newNode(int item) { struct Node* temp = (struct Node*)malloc(sizeof(struct Node)); temp->data = item; temp->left = temp->right = NULL; return temp; } // Function to find maximum vertical sum // in binary tree. int maxVerticalSum(Node* root) { if (root == NULL) { return 0; } // To store sum of each vertical level. unordered_map<int, int> verSum; // To store maximum vertical level sum. int maxSum = INT_MIN; // To store vertical level of current node. int currLev; // Queue to perform level order traversal. // Each element of queue is a pair of node // and its vertical level. queue<pair<Node*, int> > q; q.push({ root, 0 }); while (!q.empty()) { // Extract node at front of queue // and its vertical level. root = q.front().first; currLev = q.front().second; q.pop(); // Update vertical level sum of // vertical level to which // current node belongs to. verSum[currLev] += root->data; if (root->left) q.push({ root->left, currLev - 1 }); if (root->right) q.push({ root->right, currLev + 1 }); } // Find maximum vertical level sum. for (auto it : verSum) maxSum = max(maxSum, it.second); return maxSum; } // Driver Program to test above functions int main() { /* 3 / \ 4 6 / \ / \ -1 -2 5 10 \ 8 */ struct Node* root = newNode(3); root->left = newNode(4); root->right = newNode(6); root->left->left = newNode(-1); root->left->right = newNode(-2); root->right->left = newNode(5); root->right->right = newNode(10); root->right->left->right = newNode(8); cout << maxVerticalSum(root); return 0; }
Java // Java code for the above approach import java.util.*; class Node { int data; Node left, right; Node(int item) { data = item; left = right = null; } } class BinaryTree { // Function to find maximum vertical sum // in binary tree. static int maxVerticalSum(Node root) { if (root == null) { return 0; } // To store sum of each vertical level. Map<Integer, Integer> verSum = new HashMap<>(); // To store maximum vertical level sum. int maxSum = Integer.MIN_VALUE; // To store vertical level of current node. int currLev; // Queue to perform level order traversal. // Each element of queue is a pair of node // and its vertical level. Queue<AbstractMap.SimpleEntry<Node, Integer>> q = new LinkedList<>(); q.add(new AbstractMap.SimpleEntry<>(root, 0)); while (!q.isEmpty()) { // Extract node at front of queue // and its vertical level. AbstractMap.SimpleEntry<Node, Integer> front = q.poll(); root = front.getKey(); currLev = front.getValue(); // Update vertical level sum of // vertical level to which // current node belongs to. verSum.put(currLev, verSum.getOrDefault(currLev, 0) + root.data); if (root.left != null) q.add(new AbstractMap.SimpleEntry<>(root.left, currLev - 1)); if (root.right != null) q.add(new AbstractMap.SimpleEntry<>(root.right, currLev + 1)); } // Find maximum vertical level sum. for (int levelSum : verSum.values()) maxSum = Math.max(maxSum, levelSum); return maxSum; } public static void main(String[] args) { /* 3 / \ 4 6 / \ / \ -1 -2 5 10 \ 8 */ Node root = new Node(3); root.left = new Node(4); root.right = new Node(6); root.left.left = new Node(-1); root.left.right = new Node(-2); root.right.left = new Node(5); root.right.right = new Node(10); root.right.left.right = new Node(8); System.out.println(maxVerticalSum(root)); } } // This code is contributed by lokeshpotta20.
Python # Python3 program to find maximum # vertical sum in binary tree. from sys import maxsize from collections import deque INT_MIN = -maxsize class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function to find maximum vertical sum # in binary tree. def maxVerticalSum(root: Node) -> int: if (root is None): return 0 # To store sum of each vertical level. verSum = dict() # To store maximum vertical level sum. maxSum = INT_MIN # To store vertical level of current node. currLev = 0 # Queue to perform level order traversal. # Each element of queue is a pair of node # and its vertical level. q = deque() q.append([root, 0]) while (q): # Extract node at front of queue # and its vertical level. root = q[0][0] currLev = q[0][1] q.popleft() # Update vertical level sum of # vertical level to which # current node belongs to. if currLev not in verSum: verSum[currLev] = 0 verSum[currLev] += root.data if (root.left): q.append([root.left, currLev - 1]) if (root.right): q.append([root.right, currLev + 1]) # Find maximum vertical level sum. for it in verSum: maxSum = max([maxSum, verSum[it]]) return maxSum # Driver code if __name__ == "__main__": ''' 3 / \ 4 6 / \ / \ -1 -2 5 10 \ 8 ''' root = Node(3) root.left = Node(4) root.right = Node(6) root.left.left = Node(-1) root.left.right = Node(-2) root.right.left = Node(5) root.right.right = Node(10) root.right.left.right = Node(8) print(maxVerticalSum(root)) # This code is contributed by sanjeev2552
C# // C# code for the above approach using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int item) { data = item; left = right = null; } } public class GFG { // Function to find maximum vertical sum in binary tree. static int maxVerticalSum(Node root) { if (root == null) { return 0; } // To store sum of each vertical level. Dictionary<int, int> verSum = new Dictionary<int, int>(); // To store maximum vertical level sum. int maxSum = int.MinValue; // To store vertical level of current node. int currLev; // Queue to perform level order traversal. Each // element of queue is a pair of node and its // vertical level. Queue<KeyValuePair<Node, int> > q = new Queue<KeyValuePair<Node, int> >(); q.Enqueue(new KeyValuePair<Node, int>(root, 0)); while (q.Count > 0) { // Extract node at front of queue and its // vertical level. KeyValuePair<Node, int> front = q.Dequeue(); root = front.Key; currLev = front.Value; // Update vertical level sum of vertical level // to which current node belongs to. if (verSum.ContainsKey(currLev)) { verSum[currLev] += root.data; } else { verSum[currLev] = root.data; } if (root.left != null) { q.Enqueue(new KeyValuePair<Node, int>( root.left, currLev - 1)); } if (root.right != null) { q.Enqueue(new KeyValuePair<Node, int>( root.right, currLev + 1)); } } // Find maximum vertical level sum. foreach(int levelSum in verSum.Values) { maxSum = Math.Max(maxSum, levelSum); } return maxSum; } static public void Main() { // Code /* 3 / \ 4 6 / \ / \ -1 -2 5 10 \ 8 */ Node root = new Node(3); root.left = new Node(4); root.right = new Node(6); root.left.left = new Node(-1); root.left.right = new Node(-2); root.right.left = new Node(5); root.right.right = new Node(10); root.right.left.right = new Node(8); Console.WriteLine(maxVerticalSum(root)); } } // This code is contributed by sankar.
JavaScript <script> // Javascript program to find maximum // vertical sum in binary tree. // A Binary Tree Node class Node { constructor(item) { this.left = null; this.right = null; this.data = item; } } // A utility function to create a new // Binary Tree Node function newNode(item) { let temp = new Node(item); return temp; } // Function to find maximum vertical sum // in binary tree. function maxVerticalSum(root) { if (root == null) { return 0; } // To store sum of each vertical level. let verSum = new Map(); // To store maximum vertical level sum. let maxSum = Number.MIN_VALUE; // To store vertical level of current node. let currLev; // Queue to perform level order traversal. // Each element of queue is a pair of node // and its vertical level. let q = []; q.push([ root, 0 ]); while (q.length > 0) { // Extract node at front of queue // and its vertical level. root = q[0][0]; currLev = q[0][1]; q.shift(); // Update vertical level sum of // vertical level to which // current node belongs to. if (verSum.has(currLev)) { verSum.set(currLev, verSum.get(currLev) + root.data); } else { verSum.set(currLev, root.data); } if (root.left) q.push([root.left, currLev - 1]); if (root.right) q.push([root.right, currLev + 1]); } // Find maximum vertical level sum. verSum.forEach((values, keys)=>{ maxSum = Math.max(maxSum, values); }) return maxSum; } // Driver code /* 3 / \ 4 6 / \ / \ -1 -2 5 10 \ 8 */ let root = newNode(3); root.left = newNode(4); root.right = newNode(6); root.left.left = newNode(-1); root.left.right = newNode(-2); root.right.left = newNode(5); root.right.right = newNode(10); root.right.left.right = newNode(8); document.write(maxVerticalSum(root)); // This code is contributed by divyesh072019 </script>
Complexity Analysis:
- Time Complexity: O(n)
- Auxiliary Space: O(n)
Similar Reads
Find maximum level sum in Binary Tree
Given a Binary Tree having positive and negative nodes, the task is to find the maximum sum level in it. Examples: Input : 4 / \ 2 -5 / \ /\ -1 3 -2 6Output: 6Explanation :Sum of all nodes of 0'th level is 4Sum of all nodes of 1'th level is -3Sum of all nodes of 0'th level is 6Hence maximum sum is 6
15+ min read
Vertical Sum in a given Binary Tree
Given a Binary Tree, find the vertical sum of the nodes that are in the same vertical line. Input: Output: 4 2 12 11 7 9Explanation: The below image shows the horizontal distances used to print vertical traversal starting from the leftmost level to the rightmost level. Table of Content Using map - O
15 min read
Vertical Sum in Binary Tree (Space Optimized)
Given a Binary Tree, find the vertical sum of the nodes that are in the same vertical line. Input: Output: 4 2 12 11 7 9Explanation: The below image shows the horizontal distances used to print vertical traversal starting from the leftmost level to the rightmost level. Approach: We have discussed Ha
10 min read
Maximum parent children sum in Binary tree
Given a Binary Tree, find the maximum sum in a binary tree by adding the parent with its children. Exactly three Node needs to be added. If the tree does not have a node with both of its children as not NULL, return 0. We simply traverse the tree and find the Node that has the maximum sum. We need t
5 min read
Find Maximum Level Sum in Binary Tree using Recursion
Given a Binary Tree having positive and negative nodes, the task is to find the maximum sum level in it and print the maximum sum.Examples: Input: 4 / \ 2 -5 / \ / \ -1 3 -2 6 Output: 6 Sum of all nodes of the 1st level is 4. Sum of all nodes of the 2nd level is -3. Sum of all nodes of the 3rd level
10 min read
Maximum Path Sum in a Binary Tree
Given a binary tree, the task is to find the maximum path sum. The path may start and end at any node in the tree. Example: Input: Output: 42Explanation: Max path sum is represented using green colour nodes in the above binary tree. Input: Output: 31Explanation: Max path sum is represented using gre
9 min read
Maximum spiral sum in Binary Tree
Given a binary tree containing n nodes. The task is to find the maximum sum obtained when the tree is spirally traversed. In spiral traversal one by one all levels are being traversed with the root level traversed from right to left, then the next level from left to right, then further next level fr
9 min read
Vertical Traversal of a Binary Tree
Given a Binary Tree, the task is to find its vertical traversal starting from the leftmost level to the rightmost level. If multiple nodes pass through a vertical line, they should be printed as they appear in the level order traversal of the tree. Examples: Input: Output: [[4], [2], [1, 5, 6], [3,
10 min read
Maximum average of subtree values in a given Binary Tree
Given a Binary Tree consisting of N nodes, the task to find the maximum average of values of nodes of any subtree. Examples: Input: 5 / \ 3 8 Output: 8Explanation:Average of values of subtree of node 5 = (5 + 3 + 8) / 3 = 5.33Average of values of subtree of node 3 = 3 / 1 = 3Average of values of sub
9 min read
Sum of all vertical levels of a Binary Tree
Given a binary tree consisting of either 1 or 0 as its node values, the task is to find the sum of all vertical levels of the Binary Tree, considering each value to be a binary representation. Examples: Input: 1 / \ 1 0 / \ / \ 1 0 1 0Output: 7Explanation: Taking vertical levels from left to right:F
10 min read