Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Find maximum (or minimum) in Binary Tree
Next article icon

Find LCA in Binary Tree using RMQ

Last Updated : 31 Jul, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

The article describes an approach to solving the problem of finding the LCA of two nodes in a tree by reducing it to an RMQ problem.

The Lowest Common Ancestor (LCA) of two nodes u and v in a rooted tree T is defined as the node located farthest from the root that has both u and v as descendants.
For example, in the below diagram, the LCA of node 4 and node 9 is node 2.  

lca

There can be many approaches to solving the LCA problem. The approaches differ in their time and space complexities. Here is a link to a couple of them (these do not involve a reduction to RMQ).

Range Minimum Query (RMQ) is used on arrays to find the position of an element with the minimum value between two specified indices. Different approaches to solving RMQ have been discussed here and here. In this article, the Segment Tree-based approach is discussed. With a segment tree, preprocessing time is O(n) and the time for range minimum query is O(Logn). The extra space required is O(n) to store the segment tree.

Reduction of LCA to RMQ: 

The idea is to traverse the tree starting from the root by an Euler tour (traversal without lifting a pencil), which is a DFS-type traversal with preorder traversal characteristics. 
 

eulertour

Observation: 

The LCA of nodes 4 and 9 is node 2, which happens to be the node closest to the root amongst all those encountered between the visits of 4 and 9 during a DFS of T. This observation is the key to the reduction. Let’s rephrase: Our node is the node at the smallest level and the only node at that level amongst all the nodes that occur between consecutive occurrences (any) of u and v in the Euler tour of T.

We require three arrays for implementation: 

  1. Nodes visited in order of Euler tour of T
  2. The level of each node visited in the Euler tour of T
  3. Index of the first occurrence of a node in Euler tour of T (since any occurrence would be good, let’s track the first one)

lca2

Algorithm: 

  1. Do a Euler tour on the tree, and fill the euler, level and first occurrence arrays.
  2. Using the first occurrence array, get the indices corresponding to the two nodes which will be the corners of the range in the level array that is fed to the RMQ algorithm for the minimum value.
  3. Once the algorithm return the index of the minimum level in the range, we use it to determine the LCA using Euler tour array.

Below is the implementation of the above algorithm.

C++




/* C++ Program to find LCA of u and v by reducing the problem to RMQ */
#include<bits/stdc++.h>
#define V 9               // number of nodes in input tree
 
int euler[2*V - 1];       // For Euler tour sequence
int level[2*V - 1];       // Level of nodes in tour sequence
int firstOccurrence[V+1]; // First occurrences of nodes in tour
int ind;                  // Variable to fill-in euler and level arrays
 
// A Binary Tree node
struct Node
{
    int key;
    struct Node *left, *right;
};
 
// Utility function creates a new binary tree node with given key
Node * newNode(int k)
{
    Node *temp = new Node;
    temp->key = k;
    temp->left = temp->right = NULL;
    return temp;
}
 
// log base 2 of x
int Log2(int x)
{
    int ans = 0 ;
    while (x>>=1) ans++;
    return ans ;
}
 
/*  A recursive function to get the minimum value in a given range
     of array indexes. The following are parameters for this function.
 
    st    --> Pointer to segment tree
    index --> Index of current node in the segment tree. Initially
              0 is passed as root is always at index 0
    ss & se  --> Starting and ending indexes of the segment represented
                  by current node, i.e., st[index]
    qs & qe  --> Starting and ending indexes of query range */
int RMQUtil(int index, int ss, int se, int qs, int qe, int *st)
{
    // If segment of this node is a part of given range, then return
    //  the min of the segment
    if (qs <= ss && qe >= se)
        return st[index];
 
    // If segment of this node is outside the given range
    else if (se < qs || ss > qe)
        return -1;
 
    // If a part of this segment overlaps with the given range
    int mid = (ss + se)/2;
 
    int q1 = RMQUtil(2*index+1, ss, mid, qs, qe, st);
    int q2 = RMQUtil(2*index+2, mid+1, se, qs, qe, st);
 
    if (q1==-1) return q2;
 
    else if (q2==-1) return q1;
 
    return (level[q1] < level[q2]) ? q1 : q2;
}
 
// Return minimum of elements in range from index qs (query start) to
// qe (query end).  It mainly uses RMQUtil()
int RMQ(int *st, int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n-1 || qs > qe)
    {
        printf("Invalid Input");
        return -1;
    }
 
    return RMQUtil(0, 0, n-1, qs, qe, st);
}
 
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
void constructSTUtil(int si, int ss, int se, int arr[], int *st)
{
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se)st[si] = ss;
 
    else
    {
        // If there are more than one elements, then recur for left and
        // right subtrees and store the minimum of two values in this node
        int mid = (ss + se)/2;
        constructSTUtil(si*2+1, ss, mid, arr, st);
        constructSTUtil(si*2+2, mid+1, se, arr, st);
 
        if (arr[st[2*si+1]] < arr[st[2*si+2]])
            st[si] = st[2*si+1];
        else
            st[si] = st[2*si+2];
    }
}
 
/* Function to construct segment tree from given array. This function
   allocates memory for segment tree and calls constructSTUtil() to
   fill the allocated memory */
int *constructST(int arr[], int n)
{
    // Allocate memory for segment tree
 
    // Height of segment tree
    int x = Log2(n)+1;
 
    // Maximum size of segment tree
    int max_size = 2*(1<<x) - 1;  //  2*pow(2,x) -1
 
    int *st = new int[max_size];
 
    // Fill the allocated memory st
    constructSTUtil(0, 0, n-1, arr, st);
 
    // Return the constructed segment tree
    return st;
}
 
// Recursive version of the Euler tour of T
void eulerTour(Node *root, int l)
{
    /* if the passed node exists */
    if (root)
    {
        euler[ind] = root->key; // insert in euler array
        level[ind] = l;         // insert l in level array
        ind++;                  // increment index
 
        /* if unvisited, mark first occurrence */
        if (firstOccurrence[root->key] == -1)
            firstOccurrence[root->key] = ind-1;
 
        /* tour left subtree if exists, and remark euler
           and level arrays for parent on return */
        if (root->left)
        {
            eulerTour(root->left, l+1);
            euler[ind]=root->key;
            level[ind] = l;
            ind++;
        }
 
        /* tour right subtree if exists, and remark euler
           and level arrays for parent on return */
        if (root->right)
        {
            eulerTour(root->right, l+1);
            euler[ind]=root->key;
            level[ind] = l;
            ind++;
        }
    }
}
 
// Returns LCA of nodes n1, n2 (assuming they are
//  present in the tree)
int findLCA(Node *root, int u, int v)
{
    /* Mark all nodes unvisited.  Note that the size of
        firstOccurrence is 1 as node values which vary from
        1 to 9 are used as indexes */
    memset(firstOccurrence, -1, sizeof(int)*(V+1));
 
    /* To start filling euler and level arrays from index 0 */
    ind = 0;
 
    /* Start Euler tour with root node on level 0 */
    eulerTour(root, 0);
 
    /* construct segment tree on level array */
    int *st = constructST(level, 2*V-1);
 
    /* If v before u in Euler tour.  For RMQ to work, first
       parameter 'u' must be smaller than second 'v' */
    if (firstOccurrence[u]>firstOccurrence[v])
       std::swap(u, v);
 
    // Starting and ending indexes of query range
    int qs = firstOccurrence[u];
    int qe = firstOccurrence[v];
 
    // query for index of LCA in tour
    int index = RMQ(st, 2*V-1, qs, qe);
 
    /* return LCA node */
    return euler[index];
}
 
// Driver program to test above functions
int main()
{
    // Let us create the Binary Tree as shown in the diagram.
    Node * root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->left->right->left = newNode(8);
    root->left->right->right = newNode(9);
 
    int u = 4, v = 9;
    printf("The LCA of node %d and node %d is node %d.\n",
            u, v, findLCA(root, u, v));
    return 0;
}
 
 

Java




// Java program to find LCA of u and v by reducing problem to RMQ
  
import java.util.*;
  
// A binary tree node
class Node
{
    Node left, right;
    int data;
  
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
class St_class
{
    int st;
    int stt[] = new int[10000];
}
  
class BinaryTree
{
    Node root;
    int v = 9; // v is the highest value of node in our tree
    int euler[] = new int[2 * v - 1]; // for euler tour sequence
    int level[] = new int[2 * v - 1]; // level of nodes in tour sequence
    int f_occur[] = new int[2 * v - 1]; // to store 1st occurrence of nodes
    int fill; // variable to fill euler and level arrays
    St_class sc = new St_class();
  
    // log base 2 of x
    int Log2(int x)
    {
        int ans = 0;
        int y = x >>= 1;
        while (y-- != 0)
            ans++;
        return ans;
    }
  
    int swap(int a, int b)
    {
        return a;
    }
  
    /*  A recursive function to get the minimum value in a given range
     of array indexes. The following are parameters for this function.
   
     st    --> Pointer to segment tree
     index --> Index of current node in the segment tree. Initially
     0 is passed as root is always at index 0
     ss & se  --> Starting and ending indexes of the segment represented
     by current node, i.e., st[index]
     qs & qe  --> Starting and ending indexes of query range */
    int RMQUtil(int index, int ss, int se, int qs, int qe, St_class st)
    {
        // If segment of this node is a part of given range, then return
        //  the min of the segment
        if (qs <= ss && qe >= se)
            return st.stt[index];
  
        // If segment of this node is outside the given range
        else if (se < qs || ss > qe)
            return -1;
  
        // If a part of this segment overlaps with the given range
        int mid = (ss + se) / 2;
  
        int q1 = RMQUtil(2 * index + 1, ss, mid, qs, qe, st);
        int q2 = RMQUtil(2 * index + 2, mid + 1, se, qs, qe, st);
  
        if (q1 == -1)
            return q2;
        else if (q2 == -1)
            return q1;
  
        return (level[q1] < level[q2]) ? q1 : q2;
    }
  
    // Return minimum of elements in range from index qs (query start) to
    // qe (query end).  It mainly uses RMQUtil()
    int RMQ(St_class st, int n, int qs, int qe)
    {
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe)
        {
            System.out.println("Invalid input");
            return -1;
        }
  
        return RMQUtil(0, 0, n - 1, qs, qe, st);
    }
  
    // A recursive function that constructs Segment Tree for array[ss..se].
    // si is index of current node in segment tree st
    void constructSTUtil(int si, int ss, int se, int arr[], St_class st)
    {
        // If there is one element in array, store it in current node of
        // segment tree and return
        if (ss == se)
            st.stt[si] = ss;
        else
        {
            // If there are more than one elements, then recur for left and
            // right subtrees and store the minimum of two values in this node
            int mid = (ss + se) / 2;
            constructSTUtil(si * 2 + 1, ss, mid, arr, st);
            constructSTUtil(si * 2 + 2, mid + 1, se, arr, st);
  
            if (arr[st.stt[2 * si + 1]] < arr[st.stt[2 * si + 2]])
                st.stt[si] = st.stt[2 * si + 1];
            else
                st.stt[si] = st.stt[2 * si + 2];
        }
    }
  
    /* Function to construct segment tree from given array. This function
     allocates memory for segment tree and calls constructSTUtil() to
     fill the allocated memory */
    int constructST(int arr[], int n)
    {
        // Allocate memory for segment tree
        // Height of segment tree
        int x = Log2(n) + 1;
          
        // Maximum size of segment tree
        int max_size = 2 * (1 << x) - 1;  //  2*pow(2,x) -1
  
        sc.stt = new int[max_size];
  
        // Fill the allocated memory st
        constructSTUtil(0, 0, n - 1, arr, sc);
          
        // Return the constructed segment tree
        return sc.st;
    }
  
    // Recursive version of the Euler tour of T
    void eulerTour(Node node, int l)
    {
        /* if the passed node exists */
        if (node != null)
        {
            euler[fill] = node.data; // insert in euler array
            level[fill] = l;         // insert l in level array
            fill++;                  // increment index
  
            /* if unvisited, mark first occurrence */
            if (f_occur[node.data] == -1)
                f_occur[node.data] = fill - 1;
  
            /* tour left subtree if exists, and remark euler
               and level arrays for parent on return */
            if (node.left != null)
            {
                eulerTour(node.left, l + 1);
                euler[fill] = node.data;
                level[fill] = l;
                fill++;
            }
  
            /* tour right subtree if exists, and remark euler
               and level arrays for parent on return */
            if (node.right != null)
            {
                eulerTour(node.right, l + 1);
                euler[fill] = node.data;
                level[fill] = l;
                fill++;
            }
        }
    }
  
    // returns LCA of node n1 and n2 assuming they are present in tree
    int findLCA(Node node, int u, int v)
    {
        /* Mark all nodes unvisited.  Note that the size of
           firstOccurrence is 1 as node values which vary from
           1 to 9 are used as indexes */
        Arrays.fill(f_occur, -1);
  
        /* To start filling euler and level arrays from index 0 */
        fill = 0;
  
        /* Start Euler tour with root node on level 0 */
        eulerTour(root, 0);
         
        /* construct segment tree on level array */
        sc.st = constructST(level, 2 * v - 1);
          
        /* If v before u in Euler tour.  For RMQ to work, first
         parameter 'u' must be smaller than second 'v' */
        if (f_occur[u] > f_occur[v])
            u = swap(u, u = v);
  
        // Starting and ending indexes of query range
        int qs = f_occur[u];
        int qe = f_occur[v];
  
        // query for index of LCA in tour
        int index = RMQ(sc, 2 * v - 1, qs, qe);
  
        /* return LCA node */
        return euler[index];
  
    }
  
    // Driver program to test above functions
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
  
        // Let us create the Binary Tree as shown in the diagram.
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.left = new Node(6);
        tree.root.right.right = new Node(7);
        tree.root.left.right.left = new Node(8);
        tree.root.left.right.right = new Node(9);
  
        int u = 4, v = 9;
        System.out.println("The LCA of node " + u + " and " + v + " is "
                + tree.findLCA(tree.root, u, v));
    }
  
}
 
// This code has been contributed by Mayank Jaiswal
 
 

Python3




# Python3 program to find LCA of u and v by
# reducing the problem to RMQ
from math import log2, floor
from typing import List
 
class Node:
     
    def __init__(self, val: int):
         
        self.val, self.left, self.right = val, None, None
 
class BinaryTree:
     
    def __init__(self, root: Node):
         
        self.root = root
        self.val_max = self._get_max_val()
        self.euler = [0] * (2 * self.val_max - 1)
        self.level = [0] * (2 * self.val_max - 1)
        self.f_occur = [-1] * (self.val_max + 1)
        self.fill = 0
        self.segment_tree = []
 
    def _get_max_val(self):
         
        stack = [self.root]
        max_val = -1
         
        while stack:
            x = stack.pop()
            if x.val > max_val:
                max_val = x.val
            if x.left:
                stack.append(x.left)
            if x.right:
                stack.append(x.right)
                 
        return max_val
    ''' A recursive function to get the minimum value in a given range
     of array indexes. The following are parameters for this function.
      
    st    --> Pointer to segment tree
    index --> Index of current node in the segment tree. Initially
              0 is passed as root is always at index 0
    ss & se  --> Starting and ending indexes of the segment represented
                  by current node, i.e., st[index]
    qs & qe  --> Starting and ending indexes of query range '''
    def rmq_util(self, index, ss, se, qs, qe) -> int:
         
        # If segment of this node is part of given range
        # then return the min of the segment
        if qs <= ss and qe >= se:
            return self.segment_tree[index]
 
        # If segment of this node is outside
        # the given range
        elif se < qs or ss > qe:
            return -1
 
        # If part of this segment overlaps with
        # given range
        mid = (ss + se) // 2
         
        q1 = self.rmq_util(2 * index + 1,
                           ss, mid, qs, qe)
        q2 = self.rmq_util(2 * index + 2, mid + 1,
                           se, qs, qe)
                            
        if q1 == -1:
            return q2
        if q2 == -1:
            return q1
        return (q1 if self.level[q1] <
                      self.level[q2] else q2)
                       
    # Return minimum of elements in range from
    # index qs (query start) to  qe (query end). 
    # It mainly uses rmq_util()
    def rmq(self, n: int, qs: int, qe: int) -> int:
         
        if qs < 0 or qe > n - 1 or qs > qe:
            print('invalid input')
            return -1
             
        return self.rmq_util(0, 0, n - 1, qs, qe)
         
    # A recursive function that constructs Segment
    # Tree for array[ss..se]. si is index of
    # current node in segment tree st
    def construct_segment_tree_util(self, si, ss,
                                    se, arr):
 
        # If  there is one element in array,
        # store it in current node of segment tree
        # and return
        if ss == se:
            self.segment_tree[si] = ss
        else:
 
            # If there are more than one elements,
            # then recur for left and right subtrees and
            # store the min of two values in this node
            mid = (ss + se) // 2
            index_left, index_right = si * 2 + 1, si * 2 + 2
            self.construct_segment_tree_util(
                index_left, ss, mid, arr)
            self.construct_segment_tree_util(
                index_right, mid+1, se, arr)
            
            if (arr[self.segment_tree[index_left]] <
                arr[self.segment_tree[index_right]]):
                self.segment_tree[si] = self.segment_tree[index_left]
            else:
                self.segment_tree[si] = self.segment_tree[index_right]
     
    # Function to construct segment tree from given
    # array. This function allocates memory for segment
    # tree and calls construct_segment_tree_util()
    # to fill the allocated memory
    def construct_segment_tree(self, arr: List, n: int):
         
        # Height of segment tree
        x = floor(log2(n) + 1)
         
        # Maximum size of segment tree
        max_size = 2 * (1 << x) - 1      # 2*pow(2,x) -1
         
        self.segment_tree = [0] * max_size
         
        # Fill the allocated memory st
        self.construct_segment_tree_util(
            0, 0, n - 1, arr)
     
    # Recursive version of the Euler tour of T
    def euler_tour(self, node: Node, lev: int):
         
        # If the passed node exists
        if node is not None:
            self.euler[self.fill] = node.val
            self.level[self.fill] = lev
            self.fill += 1
             
            # If unvisited, mark first occurrence
            if self.f_occur[node.val] == -1:
                self.f_occur[node.val] = self.fill - 1
 
            # Tour left subtree if exists and remark
            # euler and level arrays for parent on
            # return
            if node.left is not None:
                self.euler_tour(node.left, lev + 1)
                self.euler[self.fill] = node.val
                self.level[self.fill] = lev
                self.fill += 1
 
            # Tour right subtree if exists and
            # remark euler and level arrays for
            # parent on return
            if node.right is not None:
                self.euler_tour(node.right, lev + 1)
                self.euler[self.fill] = node.val
                self.level[self.fill] = lev
                self.fill += 1
     
    # Returns LCA of nodes n1, n2 (assuming they are
    # present in the tree)
    def find_lca(self, u: int, v: int):
         
        # Start euler tour with root node on level 0
        self.euler_tour(self.root, 0)
         
        # Construct segment tree on level array
        self.construct_segment_tree(self.level,
                                2 * self.val_max - 1)
                                 
        # For rmq to work, u must be smaller than v
        if self.f_occur[u] > self.f_occur[v]:
            u, v = v, u
             
        # Start and end of query range
        qs = self.f_occur[u]
        qe = self.f_occur[v]
         
        # Query for index of lca in tour
        index = self.rmq(2 * self.val_max - 1, qs, qe)
         
        # Return lca node
        return self.euler[index]
 
# Driver code
if __name__ == "__main__":
     
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.left.right.left = Node(8)
    root.left.right.right = Node(9)
 
    tree = BinaryTree(root)
    u, v = 4, 9
    print('The lca of node {} and {} is node {}'.format(
        u, v, tree.find_lca(u, v)))
 
# This code is contributed by Rajat Srivastava
 
 

C#




// C# program to find LCA of u and
// v by reducing problem to RMQ
using System;
 
// A binary tree node
class Node
{
    public Node left, right;
    public int data;
 
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class St_class
{
    public int st;
    public int []stt = new int[10000];
}
 
public class BinaryTree
{
    Node root;
    static int v = 9; // v is the highest value of node in our tree
    int []euler = new int[2 * v - 1]; // for euler tour sequence
    int []level = new int[2 * v - 1]; // level of nodes in tour sequence
    int []f_occur = new int[2 * v - 1]; // to store 1st occurrence of nodes
    int fill; // variable to fill euler and level arrays
    St_class sc = new St_class();
 
    // log base 2 of x
    int Log2(int x)
    {
        int ans = 0;
        int y = x >>= 1;
        while (y-- != 0)
            ans++;
        return ans;
    }
 
    int swap(int a, int b)
    {
        return a;
    }
 
    /* A recursive function to get
    the minimum value in a given range
    of array indexes. The following
    are parameters for this function.
     
    st --> Pointer to segment tree
    index --> Index of current node
    in the segment tree. Initially
    0 is passed as root is always at index 0
    ss & se --> Starting and ending
    indexes of the segment represented
    by current node, i.e., st[index]
    qs & qe --> Starting and ending
    indexes of query range */
    int RMQUtil(int index, int ss, int se,
                    int qs, int qe, St_class st)
    {
        // If segment of this node is a part
        // of given range, then return
        // the min of the segment
        if (qs <= ss && qe >= se)
            return st.stt[index];
 
        // If segment of this node is
        // outside the given range
        else if (se < qs || ss > qe)
            return -1;
 
        // If a part of this segment
        // overlaps with the given range
        int mid = (ss + se) / 2;
 
        int q1 = RMQUtil(2 * index + 1,
                        ss, mid, qs, qe, st);
        int q2 = RMQUtil(2 * index + 2,
                        mid + 1, se, qs, qe, st);
 
        if (q1 == -1)
            return q2;
        else if (q2 == -1)
            return q1;
 
        return (level[q1] < level[q2]) ? q1 : q2;
    }
 
    // Return minimum of elements in
    // range from index qs (query start) to
    // qe (query end). It mainly uses RMQUtil()
    int RMQ(St_class st, int n, int qs, int qe)
    {
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe)
        {
            Console.WriteLine("Invalid input");
            return -1;
        }
 
        return RMQUtil(0, 0, n - 1, qs, qe, st);
    }
 
    // A recursive function that constructs
    // Segment Tree for array[ss..se].
    // si is index of current node in segment tree st
    void constructSTUtil(int si, int ss, int se,
                        int []arr, St_class st)
    {
        // If there is one element in array,
        // store it in current node of
        // segment tree and return
        if (ss == se)
            st.stt[si] = ss;
        else
        {
            // If there are more than one elements,
            // then recur for left and right subtrees
            // and store the minimum of two values in this node
            int mid = (ss + se) / 2;
            constructSTUtil(si * 2 + 1, ss, mid, arr, st);
            constructSTUtil(si * 2 + 2, mid + 1, se, arr, st);
 
            if (arr[st.stt[2 * si + 1]] < arr[st.stt[2 * si + 2]])
                st.stt[si] = st.stt[2 * si + 1];
            else
                st.stt[si] = st.stt[2 * si + 2];
        }
    }
 
    /* Function to construct segment tree
    from given array. This function
    allocates memory for segment tree
    and calls constructSTUtil() to
    fill the allocated memory */
    int constructST(int []arr, int n)
    {
        // Allocate memory for segment tree
        // Height of segment tree
        int x = Log2(n) + 1;
         
        // Maximum size of segment tree
        int max_size = 2 * (1 << x) - 1; // 2*pow(2,x) -1
 
        sc.stt = new int[max_size];
 
        // Fill the allocated memory st
        constructSTUtil(0, 0, n - 1, arr, sc);
         
        // Return the constructed segment tree
        return sc.st;
    }
 
    // Recursive version of the Euler tour of T
    void eulerTour(Node node, int l)
    {
        /* if the passed node exists */
        if (node != null)
        {
            euler[fill] = node.data; // insert in euler array
            level[fill] = l;         // insert l in level array
            fill++;                 // increment index
 
            /* if unvisited, mark first occurrence */
            if (f_occur[node.data] == -1)
                f_occur[node.data] = fill - 1;
 
            /* tour left subtree if exists,
                and remark euler and level
                arrays for parent on return */
            if (node.left != null)
            {
                eulerTour(node.left, l + 1);
                euler[fill] = node.data;
                level[fill] = l;
                fill++;
            }
 
            /* tour right subtree if exists, and remark euler
            and level arrays for parent on return */
            if (node.right != null)
            {
                eulerTour(node.right, l + 1);
                euler[fill] = node.data;
                level[fill] = l;
                fill++;
            }
        }
    }
 
    // returns LCA of node n1 and n2
    // assuming they are present in tree
    int findLCA(Node node, int u, int v)
    {
        /* Mark all nodes unvisited. Note
         that the size of firstOccurrence
         is 1 as node values which
         vary from 1 to 9 are used as indexes */
        //Arrays.fill(f_occur, -1);
        for(int i = 0; i < f_occur.Length; i++)
            f_occur[i] = -1;
 
 
        /* To start filling euler and
        level arrays from index 0 */
        fill = 0;
 
        /* Start Euler tour with
        root node on level 0 */
        eulerTour(root, 0);
         
        /* construct segment tree on level array */
        sc.st = constructST(level, 2 * v - 1);
         
        /* If v before u in Euler tour.
        For RMQ to work, first parameter
        'u' must be smaller than
         second 'v' */
        if (f_occur[u] > f_occur[v])
            u = swap(u, u = v);
 
        // Starting and ending indexes of query range
        int qs = f_occur[u];
        int qe = f_occur[v];
 
        // query for index of LCA in tour
        int index = RMQ(sc, 2 * v - 1, qs, qe);
 
        /* return LCA node */
        return euler[index];
 
    }
 
    // Driver program to test above functions
    public static void Main(String []args)
    {
        BinaryTree tree = new BinaryTree();
 
        // Let us create the Binary Tree
        // as shown in the diagram.
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.left = new Node(6);
        tree.root.right.right = new Node(7);
        tree.root.left.right.left = new Node(8);
        tree.root.left.right.right = new Node(9);
 
        int u = 4, v = 9;
        Console.WriteLine("The LCA of node " + u + " and " + v + " is "
                + tree.findLCA(tree.root, u, v));
    }
}
 
// This code is contributed by 29AjayKumar
 
 

Javascript




<script>
 
// JavaScript program to find LCA of u and v
// by reducing problem to RMQ
 
// A binary tree node
class Node
{
    constructor(item)
    {
        this.data=item;
        this.left = this.right = null;
    }
}
 
class St_class
{
    st;
    stt=new Array(10000);
}
 
let root;
// v is the highest value of node in our tree
let v = 9;
// for euler tour sequence
let euler = new Array(2 * v - 1);
// level of nodes in tour sequence
let level = new Array(2 * v - 1);
// to store 1st occurrence of nodes
let f_occur = new Array(2 * v - 1);
 
let fill; // variable to fill euler and level arrays
let sc = new St_class();
 
 // log base 2 of x
function Log2(x)
{
    let ans = 0;
        let y = x >>= 1;
        while (y-- != 0)
            ans++;
        return ans;
}
 
function swap(a,b)
{
    return a;
}
 
/*  A recursive function to get the
    minimum value in a given range
     of array indexes. The following
     are parameters for this function.
    
     st    --> Pointer to segment tree
     index --> Index of current node in
     the segment tree. Initially
     0 is passed as root is always at index 0
     ss & se  --> Starting and ending indexes
     of the segment represented
     by current node, i.e., st[index]
     qs & qe  --> Starting and ending indexes of query range */
function RMQUtil(index,ss,se,qs,qe,st)
{
    // If segment of this node is a part
    // of given range, then return
        //  the min of the segment
        if (qs <= ss && qe >= se)
            return st.stt[index];
   
        // If segment of this node is
        // outside the given range
        else if (se < qs || ss > qe)
            return -1;
   
        // If a part of this segment overlaps
        // with the given range
        let mid = Math.floor((ss + se) / 2);
   
        let q1 = RMQUtil(2 * index + 1, ss, mid, qs, qe, st);
        let q2 = RMQUtil(2 * index + 2, mid + 1, se, qs, qe, st);
   
        if (q1 == -1)
            return q2;
        else if (q2 == -1)
            return q1;
   
        return (level[q1] < level[q2]) ? q1 : q2;
}
 
// Return minimum of elements in range
// from index qs (query start) to
    // qe (query end).  It mainly uses RMQUtil()
function RMQ(st,n,qs,qe)
{
     // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe)
        {
            document.write("Invalid input");
            return -1;
        }
   
        return RMQUtil(0, 0, n - 1, qs, qe, st);
}
 
// A recursive function that constructs
// Segment Tree for array[ss..se].
    // si is index of current node in segment tree st
function constructSTUtil(si,ss,se,arr,st)
{
    // If there is one element in array,
    // store it in current node of
        // segment tree and return
        if (ss == se)
            st.stt[si] = ss;
        else
        {
            // If there are more than one elements,
            // then recur for left and
            // right subtrees and store the minimum
            // of two values in this node
            let mid = Math.floor((ss + se) / 2);
            constructSTUtil(si * 2 + 1, ss, mid, arr, st);
            constructSTUtil(si * 2 + 2, mid + 1, se, arr, st);
   
            if (arr[st.stt[2 * si + 1]] < arr[st.stt[2 * si + 2]])
                st.stt[si] = st.stt[2 * si + 1];
            else
                st.stt[si] = st.stt[2 * si + 2];
        }
}
 
/* Function to construct segment tree
     from given array. This function
     allocates memory for segment tree and
     calls constructSTUtil() to
     fill the allocated memory */
function constructST(arr,n)
{
    // Allocate memory for segment tree
        // Height of segment tree
        let x = Log2(n) + 1;
           
        // Maximum size of segment tree
        let max_size = 2 * (1 << x) - 1;  //  2*pow(2,x) -1
   
        sc.stt = new Array(max_size);
   
        // Fill the allocated memory st
        constructSTUtil(0, 0, n - 1, arr, sc);
           
        // Return the constructed segment tree
        return sc.st;
}
 
// Recursive version of the Euler tour of T
function eulerTour(node,l)
{
    /* if the passed node exists */
        if (node != null)
        {
            euler[fill] = node.data; // insert in euler array
            level[fill] = l;         // insert l in level array
            fill++;                  // increment index
   
            /* if unvisited, mark first occurrence */
            if (f_occur[node.data] == -1)
                f_occur[node.data] = fill - 1;
   
            /* tour left subtree if exists, and remark euler
               and level arrays for parent on return */
            if (node.left != null)
            {
                eulerTour(node.left, l + 1);
                euler[fill] = node.data;
                level[fill] = l;
                fill++;
            }
   
            /* tour right subtree if exists, and remark euler
               and level arrays for parent on return */
            if (node.right != null)
            {
                eulerTour(node.right, l + 1);
                euler[fill] = node.data;
                level[fill] = l;
                fill++;
            }
        }
}
 
// returns LCA of node n1 and n2
// assuming they are present in tree
function findLCA(node,u,v)
{
    /* Mark all nodes unvisited.  Note that the size of
           firstOccurrence is 1 as node values which vary from
           1 to 9 are used as indexes */
           for(let i=0;i<f_occur.length;i++)
           {
               f_occur[i]=-1;
           }
         
   
        /* To start filling euler and
        level arrays from index 0 */
        fill = 0;
   
        /* Start Euler tour with root node on level 0 */
        eulerTour(root, 0);
          
        /* construct segment tree on level array */
        sc.st = constructST(level, 2 * v - 1);
           
        /* If v before u in Euler tour.  For RMQ to work, first
         parameter 'u' must be smaller than second 'v' */
        if (f_occur[u] > f_occur[v])
            u = swap(u, u = v);
   
        // Starting and ending indexes of query range
        let qs = f_occur[u];
        let qe = f_occur[v];
   
        // query for index of LCA in tour
        let index = RMQ(sc, 2 * v - 1, qs, qe);
   
        /* return LCA node */
        return euler[index];
}
 
 // Driver program to test above functions
 
// Let us create the Binary Tree as shown in the diagram.
root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
root.left.right.left = new Node(8);
root.left.right.right = new Node(9);
 
u = 4, v = 9;
document.write("The LCA of node " + u +
" and node " + v + " is node "
+ findLCA(root, u, v));
 
// This code is contributed by rag2127
 
</script>
 
 
Output
The LCA of node 4 and node 9 is node 2.

Note: 

  1. We assume that the nodes queried are present in the tree.
  2. We also assumed that if there are V nodes in the tree, then the keys (or data) of these nodes are in the range from 1 to V.

Time complexity: 

  1. Euler tour: The number of nodes is V. For a tree, E = V-1. Euler tour (DFS) will take O(V+E) which is O(2*V) which can be written as O(V).
  2. Segment Tree construction : O(n) where n = V + E = 2*V – 1.
  3. Range Minimum query: O(log(n))

Overall this method takes O(n) time for preprocessing but takes O(log n) time for the query. Therefore, it can be useful when we have a single tree on which we want to perform a large number of LCA queries (Note that LCA is useful for finding the shortest path between two nodes of a Binary Tree)

Auxiliary Space:  

  1. Euler tour array: O(n) where n = 2*V – 1
  2. Node Levels array: O(n)
  3. First Occurrences array: O(V)
  4. Segment Tree: O(n)

Overall: O(n)
Another observation is that the adjacent elements in the level array differ by 1. This can be used to convert an RMQ problem to an LCA problem.



Next Article
Find maximum (or minimum) in Binary Tree
author
kartik
Improve
Article Tags :
  • Advanced Data Structure
  • DSA
  • Tree
  • LCA
  • Segment-Tree
Practice Tags :
  • Advanced Data Structure
  • Segment-Tree
  • Tree

Similar Reads

  • Find Mode in Binary Search tree
    Given a Binary Search Tree, find the mode of the tree. Note: Mode is the value of the node which has the highest frequency in the binary search tree. Examples: Input: 100 / \ 50 160 / \ / \ 50 60 140 170 Output: The mode of BST is 50Explanation: 50 is repeated 2 times, and all other nodes occur only
    10 min read
  • LCA in a tree using Binary Lifting Technique
    Given a binary tree, the task is to find the Lowest Common Ancestor of the given two nodes in the tree. Let G be a tree then the LCA of two nodes u and v is defined as the node w in the tree which is an ancestor of both u and v and is farthest from the root node. If one node is the ancestor of anoth
    14 min read
  • Find maximum vertical sum in binary tree
    Given a binary tree, find the maximum vertical level sum in binary tree. Examples: Input : 3 / \ 4 6 / \ / \ -1 -2 5 10 \ 8 Output : 14Vertical level having nodes 6 and 8 has maximumvertical sum 14. Input : 1 / \ 5 8 / \ \ 2 -6 3 \ / -1 -4 \ 9Output : 4 A simple solution is to first find vertical le
    9 min read
  • Find the closest leaf in a Binary Tree
    Given a Binary Tree and a key 'k', find distance of the closest leaf from 'k'. Examples: A / \ B C / \ E F / \ G H / \ / I J K Closest leaf to 'H' is 'K', so distance is 1 for 'H' Closest leaf to 'C' is 'B', so distance is 2 for 'C' Closest leaf to 'E' is either 'I' or 'J', so distance is 2 for 'E'
    14 min read
  • Find maximum (or minimum) in Binary Tree
    Given a Binary Tree, find the maximum(or minimum) element in it. For example, maximum in the following Binary Tree is 9. Recommended PracticeMax and min element in Binary TreeTry It! In Binary Search Tree, we can find maximum by traversing right pointers until we reach the rightmost node. But in Bin
    8 min read
  • Lowest Common Ancestor in a Binary Tree | Set 3 (Using RMQ)
    Given a rooted tree, and two nodes are in the tree, find the Lowest common ancestor of both the nodes. The LCA for two nodes u and v is defined as the farthest node from the root that is the ancestor to both u and v. Prerequisites: LCA | SET 1 Example for the above figure : Input : 4 5 Output : 2 In
    15+ min read
  • Find LCA for K queries in Complete Binary Tree
    Given an integer n. There is a complete binary tree with 2n - 1 nodes. The root of that tree is the node with the value 1, and every node with a value x has two children where the left node has the value 2*x and the right node has the value 2*x + 1, you are given K queries of type (ai, bi), and the
    6 min read
  • Search a node in Binary Tree
    Given a Binary tree and a key. The task is to search and check if the given key exists in the binary tree or not. Examples: Input: Output: TrueInput: Output: False Approach:The idea is to use any of the tree traversals to traverse the tree and while traversing check if the current node matches with
    7 min read
  • Inorder successor in Binary Tree
    Given a binary tree and a node, the task is to find the inorder successor of this node. Inorder Successor of a node in the binary tree is the next node in the Inorder traversal of the Binary Tree. Inorder Successor is NULL for the last node in Inorder traversal. In the below diagram, inorder success
    15 min read
  • Largest BST in a Binary Tree
    Given a Binary Tree, the task is to return the size of the largest subtree which is also a Binary Search Tree (BST). If the complete Binary Tree is BST, then return the size of the whole tree. Examples: Input: Output: 3 Explanation: The below subtree is the maximum size BST: Input: Output: 3 Explana
    14 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences