Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Practice on BST
  • MCQs on BST
  • BST Tutorial
  • BST Insertion
  • BST Traversals
  • BST Searching
  • BST Deletion
  • Check BST
  • Balance a BST
  • Self-Balancing BST
  • AVL Tree
  • Red-Black Tree
  • Splay Tree
  • BST Application
  • BST Advantage
Open In App
Next Article:
k-th Smallest in BST (Order Statistics in BST)
Next article icon

k-th Smallest in BST (Order Statistics in BST)

Last Updated : 03 Feb, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a Binary Search Tree (BST) and a positive integer k, find the kth smallest element in the Binary Search Tree. 

Example:

Input: k = 3

th-Largest-element-in-BST

Output: 10
Explanation: The inorder traversal of given BST is [4, 8, 10, 12, 14, 20, 22] and its 3rd smallest element is 10.

Table of Content

  • [Expected Approach] Using In-Order traversal - O(k) Time and O(h) Space
  • [Alternate Approach] Using Augmented Tree - O(h) Time and O(h) Space

[Expected Approach] Using In-Order traversal - O(k) Time and O(h) Space

The idea is to traverse the binary search tree using in-order traversal while maintaining the count of nodes traversed. If the node count becomes equal to k, then return the node.

C++
//Driver Code Starts // C++ program to find kth  // smallest value in BST #include <iostream> using namespace std;  class Node { public:     int data;     Node* left;     Node* right;     Node(int x) {         data = x;         left = nullptr;          right = nullptr;     } }; //Driver Code Ends   // Recursive function for inorder traversal of the tree and  // find its kth smallest value. // Returns -1 if value is not found. int kthSmallestRecur(Node* root, int &cnt, int k) {     if (root == nullptr) return -1;          // Process left subtree.     int left = kthSmallestRecur(root->left, cnt, k);          // If kth smallest is found in left      // subtree, then return it.     if (left != -1) return left;          // increment node count     cnt++;          // If curr node is kth smallest,     // return it.     if (cnt == k) return root->data;          // Else process the right subtree     // and return its value.     int right = kthSmallestRecur(root->right, cnt, k);     return right; }  // Function to find kth smallest value in BST. int kthSmallest(Node* root, int k) {     int cnt = 0;     return kthSmallestRecur(root, cnt, k); }   //Driver Code Starts int main() {          // Binary search tree     //      20     //    /   \     //   8     22     //  / \     // 4   12     //    /  \     //   10   14     Node* root = new Node(20);     root->left = new Node(8);     root->right = new Node(22);     root->left->left = new Node(4);     root->left->right = new Node(12);     root->left->right->left = new Node(10);     root->left->right->right = new Node(14);     int k = 3;      cout << kthSmallest(root, k) << endl;     return 0; } //Driver Code Ends 
Java
//Driver Code Starts // Java program to find kth  // smallest value in BST  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG { //Driver Code Ends       // Recursive function for inorder traversal of the tree  	// and find its kth smallest value.     // Returns -1 if value is not found.     static int kthSmallestRecur(Node root, int[] cnt, int k) {         if (root == null) return -1;                  // Process left subtree.         int left = kthSmallestRecur(root.left, cnt, k);                  // If kth smallest is found in left          // subtree, then return it.         if (left != -1) return left;                  // increment node count         cnt[0]++;                  // If curr node is kth smallest,         // return it.         if (cnt[0] == k) return root.data;                  // Else process the right subtree         // and return its value.         int right = kthSmallestRecur(root.right, cnt, k);         return right;     }      // Function to find kth smallest value in BST.     static int kthSmallest(Node root, int k) {         int[] cnt = {0};         return kthSmallestRecur(root, cnt, k);     }   //Driver Code Starts     public static void main(String[] args) {          // Binary search tree         //      20         //    /   \         //   8     22         //  / \         // 4   12         //    /  \         //   10   14         Node root = new Node(20);         root.left = new Node(8);         root.right = new Node(22);         root.left.left = new Node(4);         root.left.right = new Node(12);         root.left.right.left = new Node(10);         root.left.right.right = new Node(14);         int k = 3;          System.out.println(kthSmallest(root, k));     } }  //Driver Code Ends 
Python
#Driver Code Starts # Python program to find kth  # smallest value in BST  class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None #Driver Code Ends   # Recursive function for inorder traversal of the tree  # and find its kth smallest value. # Returns -1 if value is not found. def kthSmallestRecur(root, cnt, k):     if root is None:         return -1          # Process left subtree.     left = kthSmallestRecur(root.left, cnt, k)          # If kth smallest is found in left      # subtree, then return it.     if left != -1:         return left          # increment node count     cnt[0] += 1          # If curr node is kth smallest,     # return it.     if cnt[0] == k:         return root.data          # Else process the right subtree     # and return its value.     right = kthSmallestRecur(root.right, cnt, k)     return right  # Function to find kth smallest value in BST. def kthSmallest(root, k):     cnt = [0]     return kthSmallestRecur(root, cnt, k)   #Driver Code Starts if __name__ == "__main__":          # Binary search tree     #      20     #    /   \     #   8     22     #  / \     # 4   12     #    /  \     #   10   14     root = Node(20)     root.left = Node(8)     root.right = Node(22)     root.left.left = Node(4)     root.left.right = Node(12)     root.left.right.left = Node(10)     root.left.right.right = Node(14)     k = 3      print(kthSmallest(root, k))  #Driver Code Ends 
C#
//Driver Code Starts // C# program to find kth  // smallest value in BST  using System;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG { //Driver Code Ends       // Recursive function for inorder traversal of the tree  	// and find its kth smallest value.     // Returns -1 if value is not found.     static int kthSmallestRecur(Node root, ref int cnt, int k) {         if (root == null) return -1;                  // Process left subtree.         int left = kthSmallestRecur(root.left, ref cnt, k);                  // If kth smallest is found in left          // subtree, then return it.         if (left != -1) return left;                  // increment node count         cnt++;                  // If curr node is kth smallest,         // return it.         if (cnt == k) return root.data;                  // Else process the right subtree         // and return its value.         int right = kthSmallestRecur(root.right, ref cnt, k);         return right;     }      // Function to find kth smallest value in BST.     static int kthSmallest(Node root, int k) {         int cnt = 0;         return kthSmallestRecur(root, ref cnt, k);     }   //Driver Code Starts     static void Main(string[] args) {          // Binary search tree         //      20         //    /   \         //   8     22         //  / \         // 4   12         //    /  \         //   10   14         Node root = new Node(20);         root.left = new Node(8);         root.right = new Node(22);         root.left.left = new Node(4);         root.left.right = new Node(12);         root.left.right.left = new Node(10);         root.left.right.right = new Node(14);         int k = 3;          Console.WriteLine(kthSmallest(root, k));     } }  //Driver Code Ends 
JavaScript
//Driver Code Starts // JavaScript program to find kth  // smallest value in BST  class Node {     constructor(x) {         this.data = x;         this.left = null;         this.right = null;     } } //Driver Code Ends   // Recursive function for inorder traversal of the tree  // and find its kth smallest value. // Returns -1 if value is not found. function kthSmallestRecur(root, cnt, k) {     if (root === null) return -1;          // Process left subtree.     let left = kthSmallestRecur(root.left, cnt, k);          // If kth smallest is found in left      // subtree, then return it.     if (left !== -1) return left;          // increment node count     cnt[0]++;          // If curr node is kth smallest,     // return it.     if (cnt[0] === k) return root.data;          // Else process the right subtree     // and return its value.     let right = kthSmallestRecur(root.right, cnt, k);     return right; }  // Function to find kth smallest value in BST. function kthSmallest(root, k) {     let cnt = [0];     return kthSmallestRecur(root, cnt, k); }   //Driver Code Starts // Driver Code // Binary search tree //      20 //    /   \ //   8     22 //  / \ // 4   12 //    /  \ //   10   14 const root = new Node(20); root.left = new Node(8); root.right = new Node(22); root.left.left = new Node(4); root.left.right = new Node(12); root.left.right.left = new Node(10); root.left.right.right = new Node(14); const k = 3;  console.log(kthSmallest(root, k));  //Driver Code Ends 

Output
10 

We can optimize the space using Morris Traversal. Refer K’th smallest element in BST using O(1) Extra Space for details.

[Alternate Approach] Using Augmented Tree - O(h) Time and O(h) Space

The idea is to include a new data member ''lCount for each node. We can keep track of elements in the left subtree of every node while building the tree and storing it in this new data member.
Assuming that the root is having 'lCount' nodes in its left subtree. If k is equal to lCount + 1, then root is k-th node. If k is less than lCount + 1, we will continue our search (recursion) for the kth smallest element in the left subtree of root. If k is greater than lCount + 1, we continue our search in the right subtree. Note that we need the count of elements in the left subtree only.

C++
//Driver Code Starts // C++ program to find kth  // smallest value in BST #include <iostream> using namespace std;  class Node { public:     int data;     int lCount;     Node* left;     Node* right;     Node(int x, int l) {         data = x;         lCount = l;         left = nullptr;          right = nullptr;     } }; //Driver Code Ends   // Recursive function for inorder traversal of the tree   // and find its kth smallest value. // Returns -1 if value is not found. int kthSmallestRecur(Node* root, int &k) {     if (root == nullptr) return -1;      // Search left subtree     if (k < root->lCount+1) {         return kthSmallestRecur(root->left, k);     }          // return curr node      else if (k == root->lCount+1) {         return root->data;     }          // decrement k by (lCount+1) and      // search right subtree     else {         k = k - (root->lCount+1);         return kthSmallestRecur(root->right, k);     } }  // Function to find kth smallest value in BST. int kthSmallest(Node* root, int k) {     return kthSmallestRecur(root, k); }   //Driver Code Starts int main() {          // Binary search tree     //      20     //    /   \     //   8     22     //  / \     // 4   12     //    /  \     //   10   14     Node* root = new Node(20, 5);     root->left = new Node(8, 1);     root->right = new Node(22, 0);     root->left->left = new Node(4, 0);     root->left->right = new Node(12, 1);     root->left->right->left = new Node(10, 0);     root->left->right->right = new Node(14, 0);     int k = 3;      cout << kthSmallest(root, k) << endl;     return 0; } //Driver Code Ends 
Java
//Driver Code Starts // Java program to find kth  // smallest value in BST  class Node {     int data;     int lCount;     Node left, right;      Node(int x, int l) {         data = x;         lCount = l;         left = null;         right = null;     } }  class GfG { //Driver Code Ends       // Recursive function for inorder traversal of the tree       // and find its kth smallest value.     // Returns -1 if value is not found.     static int kthSmallestRecur(Node root, int[] k) {         if (root == null) return -1;          // Search left subtree         if (k[0] < root.lCount + 1) {             return kthSmallestRecur(root.left, k);         }                  // return curr node          else if (k[0] == root.lCount + 1) {             return root.data;         }                  // decrement k by (lCount+1) and          // search right subtree         else {             k[0] = k[0] - (root.lCount + 1);             return kthSmallestRecur(root.right, k);         }     }      // Function to find kth smallest value in BST.     static int kthSmallest(Node root, int k) {         int[] kRef = {k};         return kthSmallestRecur(root, kRef);     }   //Driver Code Starts     public static void main(String[] args) {          // Binary search tree         //      20         //    /   \         //   8     22         //  / \         // 4   12         //    /  \         //   10   14         Node root = new Node(20, 5);         root.left = new Node(8, 1);         root.right = new Node(22, 0);         root.left.left = new Node(4, 0);         root.left.right = new Node(12, 1);         root.left.right.left = new Node(10, 0);         root.left.right.right = new Node(14, 0);         int k = 3;          System.out.println(kthSmallest(root, k));     } }  //Driver Code Ends 
Python
#Driver Code Starts # Python program to find kth  # smallest value in BST  class Node:     def __init__(self, x, l):         self.data = x         self.lCount = l         self.left = None         self.right = None #Driver Code Ends   # Recursive function for inorder traversal of the tree   # and find its kth smallest value. # Returns -1 if value is not found. def kthSmallestRecur(root, k):     if root is None:         return -1      # Search left subtree     if k[0] < root.lCount + 1:         return kthSmallestRecur(root.left, k)          # return curr node      elif k[0] == root.lCount + 1:         return root.data          # decrement k by (lCount+1) and      # search right subtree     else:         k[0] -= (root.lCount + 1)         return kthSmallestRecur(root.right, k)  # Function to find kth smallest value in BST. def kthSmallest(root, k):     kRef = [k]     return kthSmallestRecur(root, kRef)   #Driver Code Starts if __name__ == "__main__":          # Binary search tree     #      20     #    /   \     #   8     22     #  / \     # 4   12     #    /  \     #   10   14     root = Node(20, 5)     root.left = Node(8, 1)     root.right = Node(22, 0)     root.left.left = Node(4, 0)     root.left.right = Node(12, 1)     root.left.right.left = Node(10, 0)     root.left.right.right = Node(14, 0)     k = 3      print(kthSmallest(root, k))  #Driver Code Ends 
C#
//Driver Code Starts // C# program to find kth  // smallest value in BST  using System;  class Node {     public int data;     public int lCount;     public Node left, right;      public Node(int x, int l) {         data = x;         lCount = l;         left = null;         right = null;     } }  class GfG { //Driver Code Ends       // Recursive function for inorder traversal of the tree       // and find its kth smallest value.     // Returns -1 if value is not found.     static int kthSmallestRecur(Node root, ref int k) {         if (root == null) return -1;          // Search left subtree         if (k < root.lCount + 1) {             return kthSmallestRecur(root.left, ref k);         }                  // return curr node          else if (k == root.lCount + 1) {             return root.data;         }                  // decrement k by (lCount+1) and          // search right subtree         else {             k -= (root.lCount + 1);             return kthSmallestRecur(root.right, ref k);         }     }      // Function to find kth smallest value in BST.     static int kthSmallest(Node root, int k) {         return kthSmallestRecur(root, ref k);     }   //Driver Code Starts     static void Main(string[] args) {          // Binary search tree         //      20         //    /   \         //   8     22         //  / \         // 4   12         //    /  \         //   10   14         Node root = new Node(20, 5);         root.left = new Node(8, 1);         root.right = new Node(22, 0);         root.left.left = new Node(4, 0);         root.left.right = new Node(12, 1);         root.left.right.left = new Node(10, 0);         root.left.right.right = new Node(14, 0);         int k = 3;          Console.WriteLine(kthSmallest(root, k));     } }  //Driver Code Ends 
JavaScript
//Driver Code Starts // JavaScript program to find kth  // smallest value in BST  class Node {     constructor(x, l) {         this.data = x;         this.lCount = l;         this.left = null;         this.right = null;     } } //Driver Code Ends   // Recursive function for inorder traversal of the tree   // and find its kth smallest value. // Returns -1 if value is not found. function kthSmallestRecur(root, k) {     if (root === null) return -1;      // Search left subtree     if (k[0] < root.lCount + 1) {         return kthSmallestRecur(root.left, k);     }          // return curr node      else if (k[0] === root.lCount + 1) {         return root.data;     }          // decrement k by (lCount+1) and      // search right subtree     else {         k[0] -= (root.lCount + 1);         return kthSmallestRecur(root.right, k);     } }  // Function to find kth smallest value in BST. function kthSmallest(root, k) {     let kRef = [k];     return kthSmallestRecur(root, kRef); }   //Driver Code Starts // Driver Code // Binary search tree //      20 //    /   \ //   8     22 //  / \ // 4   12 //    /  \ //   10   14 const root = new Node(20, 5); root.left = new Node(8, 1); root.right = new Node(22, 0); root.left.left = new Node(4, 0); root.left.right = new Node(12, 1); root.left.right.left = new Node(10, 0); root.left.right.right = new Node(14, 0); const k = 3;  console.log(kthSmallest(root, k));  //Driver Code Ends 

Output
10 

Next Article
k-th Smallest in BST (Order Statistics in BST)

K

kartik
Improve
Article Tags :
  • Binary Search Tree
  • DSA
  • Order-Statistics
  • Amazon
  • Google
  • Accolite
Practice Tags :
  • Accolite
  • Amazon
  • Google
  • Binary Search Tree

Similar Reads

    Binary Search Tree
    A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the node’s value. All nodes in the right subtree of a node contain values s
    4 min read
    Introduction to Binary Search Tree
    Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
    3 min read
    Applications of BST
    Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
    3 min read
    Applications, Advantages and Disadvantages of Binary Search Tree
    A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
    2 min read
    Insertion in Binary Search Tree (BST)
    Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
    15 min read
    Searching in Binary Search Tree (BST)
    Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
    7 min read
    Deletion in Binary Search Tree (BST)
    Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w
    10 min read
    Binary Search Tree (BST) Traversals – Inorder, Preorder, Post Order
    Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
    10 min read
    Balance a Binary Search Tree
    Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
    10 min read
    Self-Balancing Binary Search Trees
    Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences