Find element with maximum weight in given price range for Q queries
Last Updated : 21 Mar, 2023
Given an array arr[] of size N where each element denotes a pair in the form (price, weight) denoting the price and weight of each item. Given Q queries of the form [X, Y] denoting the price range. The task is to find the element with the highest weight within a given price range for each query.
Examples:
Input: arr[][] = {{24, 6}, {30, 8}, {21, 7}},
queries[][] = {{10, 24}, {20, 30}}
Output: [7, 8]
Explanation: The following are the items chosen for the above range
For first query: There are two items with given range [10, 24] -> {24, 6} and {21, 7} . Highest weight is 7.
For second query: There are two items with given range [20, 30] -> {24, 6}, {21, 7} and {30, 8}. Highest weight is 8.
Therefore, answer is [7, 8].
Input: arr[][] = {{1000, 300}, {1100, 400}, {1300, 200}, {1700, 500}, {2000, 600}},
queries[][] = {{1000, 1400}, {1700, 500}, {2000, 600}}
Output: [400, 500, 600]
Naive Approach: A Simple Solution is to run a loop for the price range and find the maximum weight for each query.
Time Complexity: O(Q*N).
Auxiliary Space: O(1)
Efficient Approach: An efficient approach is to preprocess to store the maximum weight in the price range [i, j] for any i and j. Use Segment Tree for preprocessing and query in moderate time.
Representation of Segment trees
- Leaf Nodes are the weight corresponding to elements of the input array.
- Each internal node represents the maximum weight of all leaves under it.
An array representation of a tree is used to represent Segment Trees. For each node at index i, the left child is at index 2*i+1, the right child is at 2*i+2 and the parent is at ⌊(i – 1) / 2⌋.
The solution can be elaborated by dividing the approach into two parts:
Construction of Segment Tree from the given array:
- Start with a segment [0 . . . N-1]. and every time divide the current segment into two halves (if it has not yet become a segment of length 1).
- Then call the same procedure on both halves, and for each such segment, store the maximum value in a segment tree node.
Each node here represents the max weight for the given price range between given segment indexes.
The query for the minimum value of the given range: Once the tree is constructed, how to do range maximum query using the constructed segment tree. Following is the algorithm to get the maximum.
- If the price range of the node is same as the given price range of the query, return the value in the node.
- If the range is completely outside the given range return an extremely high value or say infinite value.
- Otherwise, call a recursive function for both left and right children and return the max received from the recursive calls.
See the image below to understand the formation of segment tree for given input.
Image representation of segment tree for the given input See the following algorithm for better understanding.
// qs --> query start price, qe --> query end price
int RMQ(node, qs, qe)
{
if price range of node is within qs and qe
return value in node
else if price range of node is completely outside qs and qe
return INFINITE
else
return max( RMQ(node's left child, qs, qe), RMQ(node's right child, qs, qe) )
}
Below is the implementation of the above approach.
C++ #include <bits/stdc++.h> using namespace std; int segmentTree[400005]; // Function to get mid int getMid(int start, int end) { return start + (end - start) / 2; } // Function to fill segment tree void fillSegmentTreeUtil(int arr[][2], int start, int end, int currNode) { if (start == end) { segmentTree[currNode] = arr[start][1]; return; } int mid = getMid(start, end); fillSegmentTreeUtil(arr, start, mid, currNode * 2 + 1); fillSegmentTreeUtil(arr, mid + 1, end, currNode * 2 + 2); segmentTree[currNode] = max(segmentTree[currNode * 2 + 1], segmentTree[currNode * 2 + 2]); } // Function to utilise the segment tree int findMaxRatingUtil(int arr[][2], int start, int end, int qStart, int qEnd, int currNode) { if (qStart <= arr[start][0] && qEnd >= arr[end][0]) { return segmentTree[currNode]; } if (qStart > arr[end][0] || qEnd < arr[start][0]) { return -1; } int mid = getMid(start, end); return max( findMaxRatingUtil(arr, start, mid, qStart, qEnd, currNode * 2 + 1), findMaxRatingUtil(arr, mid + 1, end, qStart, qEnd, currNode * 2 + 2) ); } // Function to find the maximum rating int findMaxRating(int arr[][2], int n, int qStart, int qEnd) { return findMaxRatingUtil(arr, 0, n - 1, qStart, qEnd, 0); } // Driver code int main() { int arr[5][2] = {{1000, 300}, {1100, 400}, {1300, 200}, {1700, 500}, {2000, 600}}; int n = sizeof(arr) / sizeof(arr[0]); fillSegmentTreeUtil(arr, 0, n - 1, 0); int queries[3][2] = {{1000, 1400}, {1700, 1900}, {0, 3000}}; for (int i = 0; i < 3; i++) { int qStart = queries[i][0]; int qEnd = queries[i][1]; int maxRating = findMaxRating(arr, n, qStart, qEnd); cout << maxRating << endl; } return 0; }
Java // Java code to implement above approach import java.io.*; import java.util.*; class GFG { static int[] segmentTree; // Function to get mid public static int getMid(int start, int end) { return start + (end - start) / 2; } // Function to fill segment tree public static void fillSegmentTree(int[][] arr) { Arrays.sort(arr, new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { return o1[0] - o2[0]; } }); int n = arr.length; int maxHeight = (int)Math.ceil(Math.log(n) / Math.log(2)); int maxSize = 2 * (int)Math.pow(2, maxHeight) - 1; segmentTree = new int[maxSize]; fillSegmentTreeUtil(segmentTree, arr, 0, n - 1, 0); } // Function to utilise the segment tree public static int fillSegmentTreeUtil(int[] segmentTree, int[][] arr, int start, int end, int currNode) { if (start == end) { segmentTree[currNode] = arr[start][1]; return segmentTree[currNode]; } int mid = getMid(start, end); segmentTree[currNode] = Math.max( fillSegmentTreeUtil(segmentTree, arr, start, mid, currNode * 2 + 1), fillSegmentTreeUtil(segmentTree, arr, mid + 1, end, currNode * 2 + 2)); return segmentTree[currNode]; } // Function to find the maximum rating public static int findMaxRating(int[][] arr, int[] query) { int n = arr.length; return findMaxRatingUtil(segmentTree, arr, 0, n - 1, query[0], query[1], 0); } // Function to utilise the // maxRating function public static int findMaxRatingUtil(int[] segmentTree, int[][] arr, int start, int end, int qStart, int qEnd, int currNode) { if (qStart <= arr[start][0] && qEnd >= arr[end][0]) { return segmentTree[currNode]; } if (qStart > arr[end][0] || qEnd < arr[start][0]) { return -1; } int mid = getMid(start, end); return Math.max( findMaxRatingUtil(segmentTree, arr, start, mid, qStart, qEnd, currNode * 2 + 1), findMaxRatingUtil(segmentTree, arr, mid + 1, end, qStart, qEnd, currNode * 2 + 2)); } // Driver code public static void main(String[] args) { int[][] arr = { { 1000, 300 }, { 1100, 400 }, { 1300, 200 }, { 1700, 500 }, { 2000, 600 } }; fillSegmentTree(arr); int[][] queries = { { 1000, 1400 }, { 1700, 1900 }, { 0, 3000 } }; for (int[] query : queries) { System.out.println( findMaxRating(arr, query)); } } }
Python3 import math # Function to get mid def getMid(start, end): return start + (end - start) // 2 # Function to fill segment tree def fillSegmentTree(arr): arr.sort(key=lambda x: x[0]) n = len(arr) maxHeight = math.ceil(math.log(n, 2)) maxSize = 2 * (2 ** maxHeight) - 1 segmentTree = [0] * maxSize fillSegmentTreeUtil(segmentTree, arr, 0, n - 1, 0) return segmentTree # Function to utilise the segment tree def fillSegmentTreeUtil(segmentTree, arr, start, end, currNode): if start == end: segmentTree[currNode] = arr[start][1] return segmentTree[currNode] mid = getMid(start, end) segmentTree[currNode] = max(fillSegmentTreeUtil(segmentTree, arr, start, mid, currNode * 2 + 1), fillSegmentTreeUtil(segmentTree, arr, mid + 1, end, currNode * 2 + 2)) return segmentTree[currNode] # Function to find the maximum rating def findMaxRating(arr, query, segmentTree): n = len(arr) return findMaxRatingUtil(segmentTree, arr, 0, n - 1, query[0], query[1], 0) # Function to utilise the maxRating function def findMaxRatingUtil(segmentTree, arr, start, end, qStart, qEnd, currNode): if qStart <= arr[start][0] and qEnd >= arr[end][0]: return segmentTree[currNode] if qStart > arr[end][0] or qEnd < arr[start][0]: return -1 mid = getMid(start, end) return max(findMaxRatingUtil(segmentTree, arr, start, mid, qStart, qEnd, currNode * 2 + 1), findMaxRatingUtil(segmentTree, arr, mid + 1, end, qStart, qEnd, currNode * 2 + 2)) # Driver code if __name__ == '__main__': arr = [[1000, 300], [1100, 400], [1300, 200], [1700, 500], [2000, 600]] segmentTree = fillSegmentTree(arr) queries = [[1000, 1400], [1700, 1900], [0, 3000]] for query in queries: print(findMaxRating(arr, query, segmentTree))
C# using System; using System.Linq; class GFG { static int[] segmentTree; // Function to get mid public static int getMid(int start, int end) { return start + (end - start) / 2; } // Function to fill segment tree public static void fillSegmentTree(int[][] arr) { Array.Sort(arr, (x, y) => x[0].CompareTo(y[0])); int n = arr.Length; int maxHeight = (int)Math.Ceiling(Math.Log(n) / Math.Log(2)); int maxSize = 2 * (int)Math.Pow(2, maxHeight) - 1; segmentTree = new int[maxSize]; fillSegmentTreeUtil(segmentTree, arr, 0, n - 1, 0); } // Function to utilise the segment tree public static int fillSegmentTreeUtil(int[] segmentTree, int[][] arr, int start, int end, int currNode) { if (start == end) { segmentTree[currNode] = arr[start][1]; return segmentTree[currNode]; } int mid = getMid(start, end); segmentTree[currNode] = Math.Max( fillSegmentTreeUtil(segmentTree, arr, start, mid, currNode * 2 + 1), fillSegmentTreeUtil(segmentTree, arr, mid + 1, end, currNode * 2 + 2)); return segmentTree[currNode]; } // Function to find the maximum rating public static int findMaxRating(int[][] arr, int[] query) { int n = arr.Length; return findMaxRatingUtil(segmentTree, arr, 0, n - 1, query[0], query[1], 0); } // Function to utilise the maxRating function public static int findMaxRatingUtil(int[] segmentTree, int[][] arr, int start, int end, int qStart, int qEnd, int currNode) { if (qStart <= arr[start][0] && qEnd >= arr[end][0]) { return segmentTree[currNode]; } if (qStart > arr[end][0] || qEnd < arr[start][0]) { return -1; } int mid = getMid(start, end); return Math.Max( findMaxRatingUtil(segmentTree, arr, start, mid, qStart, qEnd, currNode * 2 + 1), findMaxRatingUtil(segmentTree, arr, mid + 1, end, qStart, qEnd, currNode * 2 + 2)); } // Driver code public static void Main(string[] args) { int[][] arr = new int[5][]; arr[0] = new int[] { 1000, 300 }; arr[1] = new int[] { 1100, 400 }; arr[2] = new int[] { 1300, 200 }; arr[3] = new int[] { 1700, 500 }; arr[4] = new int[] { 2000, 600 }; fillSegmentTree(arr); int[][] queries = new int[3][]; queries[0] = new int[] { 1000, 1400 }; queries[1] = new int[] { 1700, 1900 }; queries[2] = new int[] { 0, 3000 }; foreach (int[] query in queries) { Console.WriteLine(findMaxRating(arr, query)); } } }
JavaScript const segmentTree = new Array(400005); // Function to get mid function getMid(start, end) { return start + Math.floor((end - start) / 2); } // Function to fill segment tree function fillSegmentTreeUtil(arr, start, end, currNode) { if (start === end) { segmentTree[currNode] = arr[start][1]; return; } const mid = getMid(start, end); fillSegmentTreeUtil(arr, start, mid, currNode * 2 + 1); fillSegmentTreeUtil(arr, mid + 1, end, currNode * 2 + 2); segmentTree[currNode] = Math.max(segmentTree[currNode * 2 + 1], segmentTree[currNode * 2 + 2]); } // Function to utilise the segment tree function findMaxRatingUtil(arr, start, end, qStart, qEnd, currNode) { if (qStart <= arr[start][0] && qEnd >= arr[end][0]) { return segmentTree[currNode]; } if (qStart > arr[end][0] || qEnd < arr[start][0]) { return -1; } const mid = getMid(start, end); return Math.max( findMaxRatingUtil(arr, start, mid, qStart, qEnd, currNode * 2 + 1), findMaxRatingUtil(arr, mid + 1, end, qStart, qEnd, currNode * 2 + 2) ); } // Function to find the maximum rating function findMaxRating(arr, n, qStart, qEnd) { return findMaxRatingUtil(arr, 0, n - 1, qStart, qEnd, 0); } // Driver code const arr = [[1000, 300], [1100, 400], [1300, 200], [1700, 500], [2000, 600]]; const n = arr.length; fillSegmentTreeUtil(arr, 0, n - 1, 0); const queries = [[1000, 1400], [1700, 1900], [0, 3000]]; for (let i = 0; i < 3; i++) { const qStart = queries[i][0]; const qEnd = queries[i][1]; const maxRating = findMaxRating(arr, n, qStart, qEnd); console.log(maxRating); }
Time Complexity: O(N log N + Q*log N)
Auxiliary Space: O(N)
Analyzing Time Complexity: Time Complexity for sorting the given input array is O(N * LogN)
Time Complexity for tree construction is O(N). There is a total of 2N-1 nodes, and the value of every node is calculated only once in tree construction.
The time complexity for each query is O(LogN). To query a range maximum, process at most two nodes at every level, and the number of levels is O(LogN).
Related Topic: Segment Tree
Similar Reads
Segment Tree Segment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Segment tree meaning in DSA A segment tree is a data structure used to effectively query and update ranges of array members. It's typically implemented as a binary tree, with each node representing a segment or range of array elements. Segment tree Characteristics of Segment Tree:A segment tree is a binary tree with a leaf nod
2 min read
Introduction to Segment Trees - Data Structure and Algorithm Tutorials A Segment Tree is used to store information about array intervals in its nodes.It allows efficient range queries over array intervals.Along with queries, it allows efficient updates of array items.For example, we can perform a range summation of an array between the range L to R in O(Log n) while al
15+ min read
Persistent Segment Tree | Set 1 (Introduction) Prerequisite : Segment Tree Persistency in Data Structure Segment Tree is itself a great data structure that comes into play in many cases. In this post we will introduce the concept of Persistency in this data structure. Persistency, simply means to retain the changes. But obviously, retaining the
15+ min read
Segment tree | Efficient implementation Let us consider the following problem to understand Segment Trees without recursion.We have an array arr[0 . . . n-1]. We should be able to, Find the sum of elements from index l to r where 0 <= l <= r <= n-1Change the value of a specified element of the array to a new value x. We need to d
12 min read
Iterative Segment Tree (Range Maximum Query with Node Update) Given an array arr[0 . . . n-1]. The task is to perform the following operation: Find the maximum of elements from index l to r where 0 <= l <= r <= n-1.Change value of a specified element of the array to a new value x. Given i and x, change A[i] to x, 0 <= i <= n-1. Examples: Input:
14 min read
Range Sum and Update in Array : Segment Tree using Stack Given an array arr[] of N integers. The task is to do the following operations: Add a value X to all the element from index A to B where 0 ? A ? B ? N-1.Find the sum of the element from index L to R where 0 ? L ? R ? N-1 before and after the update given to the array above.Example: Input: arr[] = {1
15+ min read
Dynamic Segment Trees : Online Queries for Range Sum with Point Updates Prerequisites: Segment TreeGiven a number N which represents the size of the array initialized to 0 and Q queries to process where there are two types of queries: 1 P V: Put the value V at position P.2 L R: Output the sum of values from L to R. The task is to answer these queries. Constraints: 1 ? N
15+ min read
Applications, Advantages and Disadvantages of Segment Tree First, let us understand why we need it prior to landing on the introduction so as to get why this concept was introduced. Suppose we are given an array and we need to find out the subarray Purpose of Segment Trees: A segment tree is a data structure that deals with a range of queries over an array.
4 min read
Lazy Propagation
Lazy Propagation in Segment TreeSegment tree is introduced in previous post with an example of range sum problem. We have used the same "Sum of given Range" problem to explain Lazy propagation  How does update work in Simple Segment Tree? In the previous post, update function was called to update only a single value in array. Ple
15+ min read
Lazy Propagation in Segment Tree | Set 2Given an array arr[] of size N. There are two types of operations: Update(l, r, x) : Increment the a[i] (l <= i <= r) with value x.Query(l, r) : Find the maximum value in the array in a range l to r (both are included).Examples: Input: arr[] = {1, 2, 3, 4, 5} Update(0, 3, 4) Query(1, 4) Output
15+ min read
Flipping Sign Problem | Lazy Propagation Segment TreeGiven an array of size N. There can be multiple queries of the following types. update(l, r) : On update, flip( multiply a[i] by -1) the value of a[i] where l <= i <= r . In simple terms, change the sign of a[i] for the given range.query(l, r): On query, print the sum of the array in given ran
15+ min read