Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Practice on BST
  • MCQs on BST
  • BST Tutorial
  • BST Insertion
  • BST Traversals
  • BST Searching
  • BST Deletion
  • Check BST
  • Balance a BST
  • Self-Balancing BST
  • AVL Tree
  • Red-Black Tree
  • Splay Tree
  • BST Application
  • BST Advantage
Open In App
Next Article:
Find a pair with given sum in a Balanced BST
Next article icon

Find a pair with given sum in a Balanced BST

Last Updated : 20 Jan, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a Balanced Binary Search Tree and a target sum, the task is to check if there exist a pair in BST with sum equal to the target sum. Any modification to the Binary Search Tree is not allowed.

Input:  

Find-a-pair-with-given-sum-in-a-Balanced-BST

Output: True
Explanation: The node with values 15 and 20 form a pair which sum up to give target.

Table of Content

  • [Naive Approach] Check Compliment for Every node - O(n * h) Time and O(h) Space
  • [Expected approach] Using Inorder Traversal - O(n) Time and O(n) Space

This problem is mainly an extension of the Find if there is a triplet in a Balanced BST that adds to zero. Here, we are not allowed to modify the BST.

[Naive Approach] Check Compliment for Every node - O(n * h) Time and O(h) Space

The idea is to traverse the BST and for each node and search for their compliment , that is (target - node value) in the BST. If the complement is found, return true. Otherwise, continue checking the left and right subtrees recursively. If no such pair is found by the end of traversal, return false.

Below is the implementation of the above approach:

C++
//Driver Code Starts // C++ code to find a pair with given sum // in a Balanced BST  #include <iostream> using namespace std;  class Node {   public:     int data;     Node* left;     Node* right;     Node(int d) {         data = d;         left = nullptr;         right = nullptr;     } }; //Driver Code Ends   // Function to search for the Key in the BST bool search(Node* root, int key, Node* temp) {          // If the root is NULL, return false     if (root == nullptr)         return false;      // Start search from the root     Node* current = root;      // Traverse the BST to find the target value `k`     while (current != nullptr) {                  // If Key is found         if (current->data == key && current != temp)              return true;                // If key is smaller, move to the left         else if (key < current->data)              current = current->left;              	// If key is larger, move to the right         else              current = current->right;     }    	// Return false if no match is found     return false;  }  // Helper Function to find if there exists a pair  // with a given sum in the BST bool findTargetRec(Node* root, Node* current, int target) {     if (current == nullptr)         return false;   	   	// Check if the complement of the current node value exists   	int complement = target - current->data;   	if (search(root, complement, current))        	return true; 	     // Check for the pair in left and right subtree     return findTargetRec(root, current->left, target) ||        		findTargetRec(root, current->right, target); }  // Function to find if there exists a pair  // with a given sum in the BST bool findTarget(Node* root, int target) {   	return findTargetRec(root, root, target); }   //Driver Code Starts int main() {        // BST structure     //     //        15     //       /  \     //     10   20     //    / \   / \     //   8  12 16 25          Node* root = new Node(15);     root->left = new Node(10);     root->right = new Node(20);     root->left->left = new Node(8);     root->left->right = new Node(12);     root->right->left = new Node(16);     root->right->right = new Node(25);          int target = 35;      cout << (findTarget(root, target) ? "True" : "False");     return 0; }  //Driver Code Ends 
C
//Driver Code Starts // C code to find a pair with given sum // in a Balanced BST  #include <stdio.h> #include <stdlib.h> #include <stdbool.h>  typedef struct Node {     int data;     struct Node* left;     struct Node* right; } Node;  // Function to create a new node Node* newNode(int d) {     Node* node = (Node*)malloc(sizeof(Node));     node->data = d;     node->left = node->right = NULL;     return node; } //Driver Code Ends   // Function to search for the Key in the BST bool search(Node* root, int key, Node* temp) {     // If the root is NULL, return false     if (root == NULL)         return false;      // Start search from the root     Node* current = root;      // Traverse the BST to find the target value `key`     while (current != NULL) {         // If Key is found         if (current->data == key && current != temp)             return true;          // If key is smaller, move to the left         else if (key < current->data)             current = current->left;          // If key is larger, move to the right         else             current = current->right;     }      // Return false if no match is found     return false; }  // Helper Function to find if there exists a pair  // with a given sum in the BST bool findTargetRec(Node* root, Node* current, int target) {     if (current == NULL)         return false;      // Check if the complement of the current node value exists     int complement = target - current->data;     if (search(root, complement, current))         return true;      // Check for the pair in left and right subtree     return findTargetRec(root, current->left, target) ||            findTargetRec(root, current->right, target); }  // Function to find if there exists a pair  // with a given sum in the BST bool findTarget(Node* root, int target) {     return findTargetRec(root, root, target); }   //Driver Code Starts int main() {     // BST structure     //     //        15     //       /  \     //     10   20     //    / \   / \     //   8  12 16 25      Node* root = newNode(15);     root->left = newNode(10);     root->right = newNode(20);     root->left->left = newNode(8);     root->left->right = newNode(12);     root->right->left = newNode(16);     root->right->right = newNode(25);      int target = 35;      // Print result     printf("%s ", findTarget(root, target) ? "True" : "False");     return 0; }  //Driver Code Ends 
Java
//Driver Code Starts // Java program to find a pair with given sum // in a Balanced BST  class Node {     int data;     Node left, right;      Node(int d) {         data = d;         left = right = null;     } }  class GfG { //Driver Code Ends         // Function to search for the Key in the BST     static boolean search(Node root, int key, Node temp) {         // If the root is NULL, return false         if (root == null)             return false;          // Start search from the root         Node current = root;          // Traverse the BST to find the target value `key`         while (current != null) {             // If Key is found             if (current.data == key && current != temp)                 return true;              // If key is smaller, move to the left             else if (key < current.data)                 current = current.left;              // If key is larger, move to the right             else                 current = current.right;         }          // Return false if no match is found         return false;     }      // Helper Function to find if there exists a pair      // with a given sum in the BST     static boolean findTargetRec(Node root, Node current, int target) {         if (current == null)             return false;          // Check if the complement of the current node value exists         int complement = target - current.data;         if (search(root, complement, current))             return true;          // Check for the pair in left and right subtree         return findTargetRec(root, current.left, target) ||                findTargetRec(root, current.right, target);     }      // Function to find if there exists a pair      // with a given sum in the BST     static boolean findTarget(Node root, int target) {         return findTargetRec(root, root, target);     }   //Driver Code Starts     public static void main(String[] args) {         // BST structure         //         //        15         //       /  \         //     10   20         //    / \   / \         //   8  12 16 25          Node root = new Node(15);         root.left = new Node(10);         root.right = new Node(20);         root.left.left = new Node(8);         root.left.right = new Node(12);         root.right.left = new Node(16);         root.right.right = new Node(25);          int target = 35;          // Print result         System.out.println(findTarget(root, target) ? "True" : "False");     } }  //Driver Code Ends 
Python
#Driver Code Starts # Python program to find a pair with given sum # in a Balanced BST  class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None #Driver Code Ends   # Function to search for the Key in the BST def search(root, key, temp):     # If the root is NULL, return false     if root is None:         return False      # Start search from the root     current = root      # Traverse the BST to find the target value `key`     while current:         # If Key is found         if current.data == key and current != temp:             return True          # If key is smaller, move to the left         elif key < current.data:             current = current.left          # If key is larger, move to the right         else:             current = current.right      # Return false if no match is found     return False  # Helper Function to find if there exists a pair  # with a given sum in the BST def findTargetRec(root, current, target):     if current is None:         return False      # Check if the complement of the current node value exists     complement = target - current.data     if search(root, complement, current):         return True      # Check for the pair in left and right subtree     return findTargetRec(root, current.left, target) or \            findTargetRec(root, current.right, target)  # Function to find if there exists a pair  # with a given sum in the BST def findTarget(root, target):     return findTargetRec(root, root, target)   #Driver Code Starts if __name__ == "__main__":     # BST structure     #     #        15     #       /  \     #     10   20     #    / \   / \     #   8  12 16 25      root = Node(15)     root.left = Node(10)     root.right = Node(20)     root.left.left = Node(8)     root.left.right = Node(12)     root.right.left = Node(16)     root.right.right = Node(25)      target = 35      print("True" if findTarget(root, target) else "False")  #Driver Code Ends 
C#
//Driver Code Starts // C# program to find a pair with given sum // in a Balanced BST  using System;  class Node {     public int data;     public Node left, right;      public Node(int d) {         data = d;         left = right = null;     } }  class GfG { //Driver Code Ends         // Function to search for the Key in the BST     static bool Search(Node root, int key, Node temp) {         // If the root is NULL, return false         if (root == null)             return false;          // Start search from the root         Node current = root;          // Traverse the BST to find the target value `key`         while (current != null) {             // If Key is found             if (current.data == key && current != temp)                 return true;              // If key is smaller, move to the left             else if (key < current.data)                 current = current.left;              // If key is larger, move to the right             else                 current = current.right;         }          // Return false if no match is found         return false;     }      // Helper Function to find if there exists a pair      // with a given sum in the BST     static bool FindTargetRec(Node root, Node current, int target) {         if (current == null)             return false;          // Check if the complement of the current node value exists         int complement = target - current.data;         if (Search(root, complement, current))             return true;          // Check for the pair in left and right subtree         return FindTargetRec(root, current.left, target) ||                 FindTargetRec(root, current.right, target);     }      // Function to find if there exists a pair      // with a given sum in the BST     static bool FindTarget(Node root, int target) {         return FindTargetRec(root, root, target);     }   //Driver Code Starts     static void Main(string[] args) {         // BST structure         //         //        15         //       /  \         //     10   20         //    / \   / \         //   8  12 16 25          Node root = new Node(15);         root.left = new Node(10);         root.right = new Node(20);         root.left.left = new Node(8);         root.left.right = new Node(12);         root.right.left = new Node(16);         root.right.right = new Node(25);          int target = 35;          Console.WriteLine(FindTarget(root, target) ? "True" : "False");     } }  //Driver Code Ends 
JavaScript
//Driver Code Starts // JavaScript program to find a pair with given sum // in a Balanced BST  class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } } //Driver Code Ends   // Function to search for the Key in the BST function search(root, key, temp) {     // If the root is NULL, return false     if (root === null)         return false;      // Start search from the root     let current = root;      // Traverse the BST to find the target value `key`     while (current !== null) {         // If Key is found         if (current.data === key && current !== temp)             return true;          // If key is smaller, move to the left         else if (key < current.data)             current = current.left;          // If key is larger, move to the right         else             current = current.right;     }      // Return false if no match is found     return false; }  // Helper Function to find if there exists a pair  // with a given sum in the BST function findTargetRec(root, current, target) {     if (current === null)         return false;      // Check if the complement of the current node value exists     const complement = target - current.data;     if (search(root, complement, current))         return true;      // Check for the pair in left and right subtree     return findTargetRec(root, current.left, target) ||             findTargetRec(root, current.right, target); }  // Function to find if there exists a pair  // with a given sum in the BST function findTarget(root, target) {     return findTargetRec(root, root, target); }   //Driver Code Starts // Driver Code // BST structure // //        15 //       /  \ //     10   20 //    / \   / \ //   8  12 16 25  const root = new Node(15); root.left = new Node(10); root.right = new Node(20); root.left.left = new Node(8); root.left.right = new Node(12); root.right.left = new Node(16); root.right.right = new Node(25);  const target = 35;  console.log(findTarget(root, target) ? "True" : "False");  //Driver Code Ends 

Output
True

[Expected approach] Using Inorder Traversal - O(n) Time and O(n) Space

The idea is to create an auxiliary array and store the Inorder traversal of BST in the array. The array will be sorted as Inorder traversal of BST always produces sorted data. Now we can apply Two pointer technique to find the pair of integers with sum equal to target.
(Refer Two sum for details).

C++
//Driver Code Starts // C++ code to find a pair with given sum in a Balanced BST // Using Inorder Traversal #include <iostream> #include <vector> using namespace std;  struct Node {     int data;     Node* left;     Node* right;      Node(int d) {         data = d;         left = nullptr;         right = nullptr;     } }; //Driver Code Ends   // Function to perform Inorder traversal and store the  // elements in a vector void inorderTraversal(Node* root, vector<int>& inorder) {     if (root == nullptr)         return;      inorderTraversal(root->left, inorder);      // Store the current node's value     inorder.push_back(root->data);      inorderTraversal(root->right, inorder); }  // Function to find if there exists a pair with a  // given sum in the BST bool findTarget(Node* root, int target) {          // Create an auxiliary array and store Inorder traversal     vector<int> inorder;     inorderTraversal(root, inorder);       // Use two-pointer technique to find the pair with given sum     int left = 0, right = inorder.size() - 1;      while (left < right) {         int currentSum = inorder[left] + inorder[right];          // If the pair is found, return true         if (currentSum == target)              return true;          // If the current sum is less than the target,          // move the left pointer         if (currentSum < target)             left++;              	// If the current sum is greater than  		// the target, move the right pointer         else             right--;     }      return false; }   //Driver Code Starts int main() {        // BST structure     //     //        15     //       /  \     //     10   20     //    / \   / \     //   8  12 16 25          Node* root = new Node(15);     root->left = new Node(10);     root->right = new Node(20);     root->left->left = new Node(8);     root->left->right = new Node(12);     root->right->left = new Node(16);     root->right->right = new Node(25);          int target = 35;      cout << (findTarget(root, target) ? "True" : "False");     return 0; } //Driver Code Ends 
Java
//Driver Code Starts // Java program to find a pair with given sum in a Balanced BST // Using Inorder Traversal  import java.util.ArrayList;  class Node {     int data;     Node left, right;      Node(int data) {         this.data = data;         left = null;         right = null;     } }  class GfG { //Driver Code Ends           // Function to perform Inorder traversal and store the      // elements in an array     static void inorderTraversal(Node root, ArrayList<Integer> inorder) {         if (root == null)             return;          inorderTraversal(root.left, inorder);          // Store the current node's value         inorder.add(root.data);          inorderTraversal(root.right, inorder);     }      // Function to find if there exists a pair with a      // given sum in the BST     static boolean findTarget(Node root, int target) {                // Create an auxiliary array and store Inorder traversal         ArrayList<Integer> inorder = new ArrayList<>();         inorderTraversal(root, inorder);          // Use two-pointer technique to find the pair with given sum         int left = 0, right = inorder.size() - 1;          while (left < right) {             int currentSum = inorder.get(left) + inorder.get(right);              // If the pair is found, return true             if (currentSum == target)                 return true;              // If the current sum is less than the target,              // move the left pointer             if (currentSum < target)                 left++;                        // If the current sum is greater than              // the target, move the right pointer             else                 right--;         }          return false;     }   //Driver Code Starts     public static void main(String[] args) {         // BST structure         //         //        15         //       /  \         //     10   20         //    / \   / \         //   8  12 16 25                  Node root = new Node(15);         root.left = new Node(10);         root.right = new Node(20);         root.left.left = new Node(8);         root.left.right = new Node(12);         root.right.left = new Node(16);         root.right.right = new Node(25);          int target = 35;          System.out.println(findTarget(root, target) ? "True" : "False");     } }  //Driver Code Ends 
Python
#Driver Code Starts # Python program to find a pair with given sum in a Balanced BST # Using Inorder Traversal  class Node:     def __init__(self, data):         self.data = data         self.left = None         self.right = None #Driver Code Ends   # Function to perform Inorder traversal and store the  # elements in an array def inorderTraversal(root, inorder):     if root is None:         return      inorderTraversal(root.left, inorder)      # Store the current node's value     inorder.append(root.data)      inorderTraversal(root.right, inorder)  # Function to find if there exists a pair with a  # given sum in the BST def findTarget(root, target):     # Create an auxiliary array and store Inorder traversal     inorder = []     inorderTraversal(root, inorder)      # Use two-pointer technique to find the pair with given sum     left, right = 0, len(inorder) - 1      while left < right:         currentSum = inorder[left] + inorder[right]          # If the pair is found, return true         if currentSum == target:             return True          # If the current sum is less than the target,          # move the left pointer         if currentSum < target:             left += 1                    # If the current sum is greater than          # the target, move the right pointer         else:             right -= 1      return False   #Driver Code Starts if __name__ == "__main__":     # BST structure     #     #        15     #       /  \     #     10   20     #    / \   / \     #   8  12 16 25      root = Node(15)     root.left = Node(10)     root.right = Node(20)     root.left.left = Node(8)     root.left.right = Node(12)     root.right.left = Node(16)     root.right.right = Node(25)      target = 35      print("True" if findTarget(root, target) else "False")  #Driver Code Ends 
C#
//Driver Code Starts // C# program to find a pair with given sum in a Balanced BST // Using Inorder Traversal  using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int data) {         this.data = data;         left = right = null;     } }  class GfG { //Driver Code Ends       // Function to perform Inorder traversal and store the      // elements in a list     static void InorderTraversal(Node root, List<int> inorder) {         if (root == null)             return;          InorderTraversal(root.left, inorder);          // Store the current node's value         inorder.Add(root.data);          InorderTraversal(root.right, inorder);     }      // Function to find if there exists a pair with a      // given sum in the BST     static bool FindTarget(Node root, int target) {                // Create an auxiliary list and store Inorder traversal         List<int> inorder = new List<int>();         InorderTraversal(root, inorder);          // Use two-pointer technique to find the pair with given sum         int left = 0, right = inorder.Count - 1;          while (left < right) {             int currentSum = inorder[left] + inorder[right];              // If the pair is found, return true             if (currentSum == target)                 return true;              // If the current sum is less than the target,              // move the left pointer             if (currentSum < target)                 left++;                        // If the current sum is greater than              // the target, move the right pointer             else                 right--;         }          return false;     }   //Driver Code Starts     static void Main(string[] args) {         // BST structure         //         //        15         //       /  \         //     10   20         //    / \   / \         //   8  12 16 25          Node root = new Node(15);         root.left = new Node(10);         root.right = new Node(20);         root.left.left = new Node(8);         root.left.right = new Node(12);         root.right.left = new Node(16);         root.right.right = new Node(25);          int target = 35;          Console.WriteLine(FindTarget(root, target) ? "True" : "False");     } }  //Driver Code Ends 
JavaScript
//Driver Code Starts // JavaScript program to find a pair with given sum in a Balanced BST // Using Inorder Traversal  class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } } //Driver Code Ends   // Function to perform Inorder traversal and store the  // elements in an array function inorderTraversal(root, inorder) {     if (root === null)         return;      inorderTraversal(root.left, inorder);      // Store the current node's value     inorder.push(root.data);      inorderTraversal(root.right, inorder); }  // Function to find if there exists a pair with a  // given sum in the BST function findTarget(root, target) {      // Create an auxiliary array and store Inorder traversal     let inorder = [];     inorderTraversal(root, inorder);      // Use two-pointer technique to find the pair with given sum     let left = 0, right = inorder.length - 1;      while (left < right) {         let currentSum = inorder[left] + inorder[right];          // If the pair is found, return true         if (currentSum === target)             return true;          // If the current sum is less than the target,          // move the left pointer         if (currentSum < target)             left++;                    // If the current sum is greater than          // the target, move the right pointer         else             right--;     }      return false; }   //Driver Code Starts // Driver Code // BST structure // //        15 //       /  \ //     10   20 //    / \   / \ //   8  12 16 25  const root = new Node(15); root.left = new Node(10); root.right = new Node(20); root.left.left = new Node(8); root.left.right = new Node(12); root.right.left = new Node(16); root.right.right = new Node(25);  const target = 35;  console.log(findTarget(root, target) ? "True" : "False");  //Driver Code Ends 

Output
True


Next Article
Find a pair with given sum in a Balanced BST

K

kartik
Improve
Article Tags :
  • Binary Search Tree
  • DSA
  • Amazon
  • VMWare
  • Snapdeal
  • Visa
  • OYO
Practice Tags :
  • Amazon
  • Snapdeal
  • Visa
  • VMWare
  • Binary Search Tree

Similar Reads

    Binary Search Tree
    A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the node’s value. All nodes in the right subtree of a node contain values s
    4 min read
    Introduction to Binary Search Tree
    Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
    3 min read
    Applications of BST
    Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
    3 min read
    Applications, Advantages and Disadvantages of Binary Search Tree
    A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
    2 min read
    Insertion in Binary Search Tree (BST)
    Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
    15 min read
    Searching in Binary Search Tree (BST)
    Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
    7 min read
    Deletion in Binary Search Tree (BST)
    Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w
    10 min read
    Binary Search Tree (BST) Traversals – Inorder, Preorder, Post Order
    Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
    10 min read
    Balance a Binary Search Tree
    Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
    10 min read
    Self-Balancing Binary Search Trees
    Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences