Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Practice Mathematical Algorithm
  • Mathematical Algorithms
  • Pythagorean Triplet
  • Fibonacci Number
  • Euclidean Algorithm
  • LCM of Array
  • GCD of Array
  • Binomial Coefficient
  • Catalan Numbers
  • Sieve of Eratosthenes
  • Euler Totient Function
  • Modular Exponentiation
  • Modular Multiplicative Inverse
  • Stein's Algorithm
  • Juggler Sequence
  • Chinese Remainder Theorem
  • Quiz on Fibonacci Numbers
Open In App
Next Article:
Primality Test | Set 3 (Miller–Rabin)
Next article icon

Fermat Method of Primality Test

Last Updated : 01 Jun, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a number n, check if it is prime or not. We have introduced and discussed the School method for primality testing in Set 1.
Introduction to Primality Test and School Method
In this post, Fermat’s method is discussed. This method is a probabilistic method and is based on Fermat’s Little Theorem.

Fermat's Little Theorem: If n is a prime number, then for every a, 1 < a < n-1,  an-1 ? 1 (mod n)  OR  an-1 % n = 1     Example: Since 5 is prime, 24 ? 1 (mod 5) [or 24%5 = 1],          34 ? 1 (mod 5) and 44 ? 1 (mod 5)            Since 7 is prime, 26 ? 1 (mod 7),          36 ? 1 (mod 7), 46 ? 1 (mod 7)           56 ? 1 (mod 7) and 66 ? 1 (mod 7)   Refer this for different proofs.

If a given number is prime, then this method always returns true. If the given number is composite (or non-prime), then it may return true or false, but the probability of producing incorrect results for composite is low and can be reduced by doing more iterations.

Below is algorithm: 

// Higher value of k indicates probability of correct // results for composite inputs become higher. For prime // inputs, result is always correct 1)  Repeat following k times:       a) Pick a randomly in the range [2, n - 2]       b) If gcd(a, n) ? 1, then return false       c) If an-1 &nequiv; 1 (mod n), then return false 2) Return true [probably prime].
Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

Below is the implementation of the above algorithm. The code uses power function from Modular Exponentiation 

C++




// C++ program to find the smallest twin in given range
#include <bits/stdc++.h>
using namespace std;
 
/* Iterative Function to calculate (a^n)%p in O(logy) */
int power(int a, unsigned int n, int p)
{
    int res = 1;      // Initialize result
    a = a % p;  // Update 'a' if 'a' >= p
 
    while (n > 0)
    {
        // If n is odd, multiply 'a' with result
        if (n & 1)
            res = (res*a) % p;
 
        // n must be even now
        n = n>>1; // n = n/2
        a = (a*a) % p;
    }
    return res;
}
 
/*Recursive function to calculate gcd of 2 numbers*/
int gcd(int a, int b)
{
    if(a < b)
        return gcd(b, a);
    else if(a%b == 0)
        return b;
    else return gcd(b, a%b); 
}
 
// If n is prime, then always returns true, If n is
// composite than returns false with high probability
// Higher value of k increases probability of correct
// result.
bool isPrime(unsigned int n, int k)
{
   // Corner cases
   if (n <= 1 || n == 4)  return false;
   if (n <= 3) return true;
 
   // Try k times
   while (k>0)
   {
       // Pick a random number in [2..n-2]       
       // Above corner cases make sure that n > 4
       int a = 2 + rand()%(n-4); 
 
       // Checking if a and n are co-prime
       if (gcd(n, a) != 1)
          return false;
  
       // Fermat's little theorem
       if (power(a, n-1, n) != 1)
          return false;
 
       k--;
    }
 
    return true;
}
 
// Driver Program to test above function
int main()
{
    int k = 3;
    isPrime(11, k)?  cout << " true\n": cout << " false\n";
    isPrime(15, k)?  cout << " true\n": cout << " false\n";
    return 0;
}
 
 

Java




// Java program to find the
// smallest twin in given range
 
import java.io.*;
import java.math.*;
 
class GFG {
     
    /* Iterative Function to calculate
    // (a^n)%p in O(logy) */
    static int power(int a,int n, int p)
    {
        // Initialize result
        int res = 1;
         
        // Update 'a' if 'a' >= p
        a = a % p;
     
        while (n > 0)
        {
            // If n is odd, multiply 'a' with result
            if ((n & 1) == 1)
                res = (res * a) % p;
     
            // n must be even now
            n = n >> 1; // n = n/2
            a = (a * a) % p;
        }
        return res;
    }
     
    // If n is prime, then always returns true,
    // If n is composite than returns false with
    // high probability Higher value of k increases
    //  probability of correct result.
    static boolean isPrime(int n, int k)
    {
    // Corner cases
    if (n <= 1 || n == 4) return false;
    if (n <= 3) return true;
     
    // Try k times
    while (k > 0)
    {
        // Pick a random number in [2..n-2]    
        // Above corner cases make sure that n > 4
        int a = 2 + (int)(Math.random() % (n - 4));
     
        // Fermat's little theorem
        if (power(a, n - 1, n) != 1)
            return false;
     
        k--;
        }
     
        return true;
    }
     
    // Driver Program
    public static void main(String args[])
    {
        int k = 3;
        if(isPrime(11, k))
            System.out.println(" true");
        else
            System.out.println(" false");
        if(isPrime(15, k))
            System.out.println(" true");
        else
            System.out.println(" false");
             
    }
}
 
// This code is contributed by Nikita Tiwari.
 
 

Python3




# Python3 program to find the smallest
# twin in given range
import random
 
# Iterative Function to calculate
# (a^n)%p in O(logy)
def power(a, n, p):
     
    # Initialize result
    res = 1
     
    # Update 'a' if 'a' >= p
    a = a % p 
     
    while n > 0:
         
        # If n is odd, multiply
        # 'a' with result
        if n % 2:
            res = (res * a) % p
            n = n - 1
        else:
            a = (a ** 2) % p
             
            # n must be even now
            n = n // 2
             
    return res % p
     
# If n is prime, then always returns true,
# If n is composite than returns false with
# high probability Higher value of k increases
# probability of correct result
def isPrime(n, k):
     
    # Corner cases
    if n == 1 or n == 4:
        return False
    elif n == 2 or n == 3:
        return True
     
    # Try k times
    else:
        for i in range(k):
             
            # Pick a random number
            # in [2..n-2]     
            # Above corner cases make
            # sure that n > 4
            a = random.randint(2, n - 2)
             
            # Fermat's little theorem
            if power(a, n - 1, n) != 1:
                return False
                 
    return True
             
# Driver code
k = 3
if isPrime(11, k):
  print("true")
else:
  print("false")
   
if isPrime(15, k):
  print("true")
else:
  print("false")
 
# This code is contributed by Aanchal Tiwari
 
 

C#




// C# program to find the
// smallest twin in given range
using System;
class GFG {
     
    /* Iterative Function to calculate
    // (a^n)%p in O(logy) */
    static int power(int a,int n, int p)
    {
        // Initialize result
        int res = 1;
          
        // Update 'a' if 'a' >= p
        a = a % p;
      
        while (n > 0)
        {
            // If n is odd, multiply 'a' with result
            if ((n & 1) == 1)
                res = (res * a) % p;
      
            // n must be even now
            n = n >> 1; // n = n/2
            a = (a * a) % p;
        }
        return res;
    }
      
    // If n is prime, then always returns true,
    // If n is composite than returns false with
    // high probability Higher value of k increases
    //  probability of correct result.
    static bool isPrime(int n, int k)
    {
        // Corner cases
        if (n <= 1 || n == 4) return false;
        if (n <= 3) return true;
          
        // Try k times
        while (k > 0)
        {
            // Pick a random number in [2..n-2]    
            // Above corner cases make sure that n > 4
            Random rand = new Random();
            int a = 2 + (int)(rand.Next() % (n - 4));
          
            // Fermat's little theorem
            if (power(a, n - 1, n) != 1)
                return false;
          
            k--;
        }
      
        return true;
    }
     
  static void Main() {
        int k = 3;
        if(isPrime(11, k))
            Console.WriteLine(" true");
        else
            Console.WriteLine(" false");
        if(isPrime(15, k))
            Console.WriteLine(" true");
        else
            Console.WriteLine(" false");
  }
}
 
// This code is contributed by divyesh072019
 
 

PHP




<?php
// PHP program to find the
// smallest twin in given range
 
// Iterative Function to calculate
// (a^n)%p in O(logy)
function power($a, $n, $p)
{
     
    // Initialize result
    $res = 1;
     
    // Update 'a' if 'a' >= p
    $a = $a % $p;
 
    while ($n > 0)
    {
         
        // If n is odd, multiply
        // 'a' with result
        if ($n & 1)
            $res = ($res * $a) % $p;
 
        // n must be even now
        $n = $n >> 1; // n = n/2
        $a = ($a * $a) % $p;
    }
    return $res;
}
 
// If n is prime, then always
// returns true, If n is
// composite than returns
// false with high probability
// Higher value of k increases
// probability of correct
// result.
function isPrime($n, $k)
{
     
    // Corner cases
    if ($n <= 1 || $n == 4)
    return false;
    if ($n <= 3)
    return true;
     
    // Try k times
    while ($k > 0)
    {
         
        // Pick a random number
        // in [2..n-2]
        // Above corner cases
        // make sure that n > 4
        $a = 2 + rand() % ($n - 4);
     
        // Fermat's little theorem
        if (power($a, $n-1, $n) != 1)
            return false;
     
        $k--;
    }
 
    return true;
}
 
// Driver Code
$k = 3;
$res = isPrime(11, $k) ? " true\n": " false\n";
echo($res);
 
$res = isPrime(15, $k) ? " true\n": " false\n";
echo($res);
 
// This code is contributed by Ajit.
?>
 
 

Javascript




<script>
 
// Javascript program to find the
// smallest twin in given range
 
     
/* Iterative Function to calculate
// (a^n)%p in O(logy) */
function power( a, n, p)
{
    // Initialize result
    let res = 1;
         
    // Update 'a' if 'a' >= p
    a = a % p;
     
    while (n > 0)
    {
        // If n is odd, multiply 'a' with result
        if ((n & 1) == 1)
            res = (res * a) % p;
     
        // n must be even now
        n = n >> 1; // n = n/2
        a = (a * a) % p;
    }
    return res;
}
     
// If n is prime, then always returns true,
// If n is composite than returns false with
// high probability Higher value of k increases
// probability of correct result.
function isPrime( n, k)
{
// Corner cases
if (n <= 1 || n == 4) return false;
if (n <= 3) return true;
     
// Try k times
while (k > 0)
{
    // Pick a random number in [2..n-2]   
    // Above corner cases make sure that n > 4
    let a = Math.floor(Math.random()* (n-1 - 2) + 2);
     
    // Fermat's little theorem
    if (power(a, n - 1, n) != 1)
        return false;
     
    k--;
    }
     
    return true;
}
 
 
// Driver Code
 
let k = 3;
if(isPrime(11, k))
    document.write(" true" + "</br>");
else
    document.write(" false"+ "</br>");
if(isPrime(15, k))
    document.write(" true"+ "</br>");
else
    document.write(" false"+ "</br>");
 
</script>
 
 

Output: 

true false

Time complexity: O(k Log n). Note that the power function takes O(Log n) time. 

Auxiliary Space: O(min(log a, log b))
Note that the above method may fail even if we increase the number of iterations (higher k). There exist some composite numbers with the property that for every a < n and gcd(a, n) = 1 we have an-1 ? 1 (mod n). Such numbers are called Carmichael numbers. Fermat’s primality test is often used if a rapid method is needed for filtering, for example in the key generation phase of the RSA public key cryptographic algorithm.

We will soon be discussing more methods for Primality Testing.

References: 
https://en.wikipedia.org/wiki/Fermat_primality_test 
https://en.wikipedia.org/wiki/Prime_number 
http://www.cse.iitk.ac.in/users/manindra/presentations/FLTBasedTests.pdf 
https://en.wikipedia.org/wiki/Primality_test

 



Next Article
Primality Test | Set 3 (Miller–Rabin)

A

Ajay
Improve
Article Tags :
  • DSA
  • Mathematical
  • Randomized
  • Modular Arithmetic
  • number-theory
  • Prime Number
Practice Tags :
  • Mathematical
  • Modular Arithmetic
  • number-theory
  • Prime Number

Similar Reads

  • Check for Prime Number
    In this problem, you are given a number n and you have to check whether it is a Prime number or not. Input: n = 10Output: falseExplanation: 10 is divisible by 2 and 5 Input: n = 11Output: trueExplanation: 11 is divisible by 1 and 11 only Input: n = 1Output: falseExplanation: 1 is neither composite n
    11 min read
  • Primality Test Algorithms

    • Introduction to Primality Test and School Method
      Given a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Examples of the first few prime numbers are {2, 3, 5, ...}Examples : Input: n = 11Output: true Input: n = 15Output: false Input: n = 1Outpu
      10 min read

    • Fermat Method of Primality Test
      Given a number n, check if it is prime or not. We have introduced and discussed the School method for primality testing in Set 1.Introduction to Primality Test and School MethodIn this post, Fermat's method is discussed. This method is a probabilistic method and is based on Fermat's Little Theorem.
      10 min read

    • Primality Test | Set 3 (Miller–Rabin)
      Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.Primality Test | Set 1 (Introduction and School Method) Primality Test | Set 2 (Fermat Method)In this post, the Miller-Rabin method is discussed. This method is a probabili
      15+ min read

    • Solovay-Strassen method of Primality Test
      We have already been introduced to primality testing in the previous articles in this series. Introduction to Primality Test and School MethodFermat Method of Primality TestPrimality Test | Set 3 (Miller–Rabin)The Solovay–Strassen test is a probabilistic algorithm used to check if a number is prime
      13 min read

    • Lucas Primality Test
      A number p greater than one is prime if and only if the only divisors of p are 1 and p. First few prime numbers are 2, 3, 5, 7, 11, 13, ...The Lucas test is a primality test for a natural number n, it can test primality of any kind of number.It follows from Fermat’s Little Theorem: If p is prime and
      12 min read

  • Sieve of Eratosthenes
    Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. Examples: Input: n = 10Output: 2 3 5 7Explanation: The prime numbers up to 10 obtained by Sieve of Eratosthenes are 2 3 5 7 . Input: n = 20Output: 2 3 5 7 11 13 17 19Explanation: The prime numbe
    6 min read
  • How is the time complexity of Sieve of Eratosthenes is n*log(log(n))?
    Pre-requisite: Sieve of Eratosthenes What is Sieve of Eratosthenes algorithm? In order to analyze it, let's take a number n and the task is to print the prime numbers less than n. Therefore, by definition of Sieve of Eratosthenes, for every prime number, it has to check the multiples of the prime an
    3 min read
  • Sieve of Eratosthenes in 0(n) time complexity
    The classical Sieve of Eratosthenes algorithm takes O(N log (log N)) time to find all prime numbers less than N. In this article, a modified Sieve is discussed that works in O(N) time.Example : Given a number N, print all prime numbers smaller than N Input : int N = 15 Output : 2 3 5 7 11 13 Input :
    12 min read
  • Programs and Problems based on Sieve of Eratosthenes

    • C++ Program for Sieve of Eratosthenes
      Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19". [GFGTABS] CPP // C++ program to print all primes smaller than or equal
      2 min read

    • Java Program for Sieve of Eratosthenes
      Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19". Java Code // Java program to print all primes smaller than or equal to
      2 min read

    • Scala | Sieve of Eratosthenes
      Eratosthenes of Cyrene was a Greek mathematician, who discovered an amazing algorithm to find prime numbers. This article performs this algorithm in Scala. Step 1 : Creating an Int Stream def numberStream(n: Int): Stream[Int] = Stream.from(n) println(numberStream(10)) Output of above step is Stream(
      4 min read

    • Check if a number is Primorial Prime or not
      Given a positive number N, the task is to check if N is a primorial prime number or not. Print 'YES' if N is a primorial prime number otherwise print 'NO.Primorial Prime: In Mathematics, A Primorial prime is a prime number of the form pn# + 1 or pn# - 1 , where pn# is the primorial of pn i.e the pro
      10 min read

    • Sum of all Primes in a given range using Sieve of Eratosthenes
      Given a range [l, r], the task is to find the sum of all the prime numbers in the given range from l to r both inclusive. Examples: Input : l = 10, r = 20Output : 60Explanation: Prime numbers between [10, 20] are: 11, 13, 17, 19Therefore, sum = 11 + 13 + 17 + 19 = 60 Input : l = 15, r = 25Output : 5
      1 min read

    • Prime Factorization using Sieve O(log n) for multiple queries
      We can calculate the prime factorization of a number "n" in O(sqrt(n)) as discussed here. But O(sqrt n) method times out when we need to answer multiple queries regarding prime factorization.In this article, we study an efficient method to calculate the prime factorization using O(n) space and O(log
      11 min read

    • Java Program to Implement Sieve of Eratosthenes to Generate Prime Numbers Between Given Range
      A number which is divisible by 1 and itself or a number which has factors as 1 and the number itself is called a prime number. The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so. Example: Input : from = 1, to = 20 Out
      3 min read

  • Segmented Sieve
    Given a number n, print all primes smaller than n. Input: N = 10Output: 2, 3, 5, 7Explanation : The output “2, 3, 5, 7” for input N = 10 represents the list of the prime numbers less than or equal to 10. Input: N = 5Output: 2, 3, 5 Explanation : The output “2, 3, 5” for input N = 5 represents the li
    15+ min read
  • Segmented Sieve (Print Primes in a Range)
    Given a range [low, high], print all primes in this range? For example, if the given range is [10, 20], then output is 11, 13, 17, 19. A Naive approach is to run a loop from low to high and check each number for primeness. A Better Approach is to precalculate primes up to the maximum limit using Sie
    15 min read
  • Longest sub-array of Prime Numbers using Segmented Sieve
    Given an array arr[] of N integers, the task is to find the longest subarray where all numbers in that subarray are prime. Examples: Input: arr[] = {3, 5, 2, 66, 7, 11, 8} Output: 3 Explanation: Maximum contiguous prime number sequence is {2, 3, 5} Input: arr[] = {1, 2, 11, 32, 8, 9} Output: 2 Expla
    13 min read
  • Sieve of Sundaram to print all primes smaller than n
    Given a number n, print all primes smaller than or equal to n. Examples:  Input: n = 10Output: 2, 3, 5, 7Input: n = 20Output: 2, 3, 5, 7, 11, 13, 17, 19We have discussed Sieve of Eratosthenes algorithm for the above task.  Below is Sieve of Sundaram algorithm. printPrimes(n)[Prints all prime numbers
    10 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences