Electrostatics of Conductors
Last Updated : 21 Jul, 2021
When an external force is used to remove a body from a situation. Point to another in the face of a force like spring or gravitational force That work is stored in the body as potential energy. When the external environment When a force is eliminated, the body moves, gaining and losing kinetic energy. An amount of potential energy that is equal. The total amount of kinetic and As a result, potential energy is conserved. This type of force is referred to as Conservative forces are at work. Examples of forces include spring force and gravitational force. Conservative forces are at work.
What are Conductors?
A metal rod rubbed with wool in the hand will not exhibit any evidence of being charged. A metal rod with a wooden or plastic grip, on the other hand, exhibits symptoms of charge when brushed with wool without touching its metal part. Consider a copper wire with one end linked to a neutral pith ball and the other to a negatively charged plastic rod. The pith ball acquires a negative charge, as can be seen. A similar experiment using a nylon thread or a rubber band yielded no charge transfer from the plastic rod to the pith ball.
Conductors are materials that permit the free flow of electricity through them. Inside the material, they have comparatively free-moving electric charges (electrons). Metals, human and animal bodies, and the ground itself are all conductors.
As a safety measure, earthing electrical circuits and equipment are beneficial. A large metal plate is buried deep in the ground, and thick wires are dragged from it to connect houses to the earth near the mains supply. The electrical wiring in our homes is made up of three wires: live, neutral, and earth. The first two transport power from the power plant, while the third is earthed by connecting to a buried metal plate. Electric equipment such as electric irons, refrigerators, and televisions have an earth wire that is attached to the metallic body. When a fault happens or a live wire comes into contact with the metallic body, the charge flows to the earth without destroying the appliance or injuring humans; otherwise, because the human body is a conductor of electricity, this would have been unavoidable.
Electrostatics of Conductors
Mobile charge carriers are found in conductors. Electrons are the charge carriers in metallic conductors. The outside (valence) electrons of metal separate from their atoms and become free to move. These electrons are free to move about within the metal but not outside it. The liberated electrons form a kind of 'gas,' colliding with one other and the ions as they move in random directions. They float in the opposite direction of an external electric field. The positive ions, which are made up of nuclei and bound electrons, are maintained in place. The charge carriers in electrolytic conductors are both positive and negative ions; however, the situation is more complicated in this case since the charge carriers' movement is influenced by both the external electric field and the so-called chemical forces. Let's take a look at some key findings in conductor electrostatics.
- Inside a conductor, an electrostatic field is zero.
Consider a neutral or charged conductor. There could also be an electrostatic field outside the room. The electric field is zero everywhere inside the conductor in a static scenario, when there is no current inside or on the surface of the conductor. This fact can be considered a conductor's defining characteristic. Free electrons exist in a conductor. The free charge carriers will suffer force and drift as long as the electric field is not zero. The free charges have dispersed themselves so evenly inside the static condition that the electric field is zero everywhere. Inside a conductor, the electrostatic field is zero.
- At the surface of a charged conductor, the electrostatic field must be normal to the surface at every point.
E would have a non-zero component along the surface if it wasn't normal to the surface. The free charges on the conductor's surface would then be forced to shift. As a result, in a static scenario, E should have no tangential component. As a result, the electrostatic field at the surface of a charged conductor must be perpendicular to the surface at all times. (Field is zero even at the surface of a conductor with no surface charge density.)
- The interior of a conductor can have no excess charge in a static situation.
Every little volume or surface element in a neutral conductor has the same quantity of positive and negative charges. When the conductor is charged in a static condition, the excess charge can only dwell on the surface. This is based on Gauss's law. Consider a conductor with any arbitrary volume element v. The electrostatic field is zero on the closed surface S that surrounds the volume element v. As a result, the total electric flux passing through S is zero. As a result, according to Gauss' law, there is no net charge enclosed by S. However, the surface S can be made as small as desired, resulting in a vanishingly small volume v. This means that there is no net charge inside the conductor at any point, and any excess charge must be discharged at the surface.
- The electrostatic potential is constant throughout the volume of the conductor and has the same value (as inside) on its surface.
This follows the point 1 and 2 which is mention above. There is no work done in moving a small test charge within the conductor and on its surface because E = 0 inside the conductor and has no tangential component on the surface. That is, no potential difference exists between any two places inside or on the conductor's surface. As a result, the outcome. If the conductor is charged, an electric field normal to the surface exists; this means the surface and a point just outside the surface have different potentials. Each conductor in a system of conductors of arbitrary size, shape, and charge arrangement is defined by a constant value of potential, which may differ from one conductor to the next.
- The electric field at the surface of a charged conductor
E=\frac{\sigma}{\epsilon_0}\hat{n} ................(1)
where σ is the surface charge density and \hat{n} is a unit vector normal to the surface in the outward direction.
The Gaussian surface (a pillbox) was chosen to derive the electric field at the surface of a charged conductor. To get the result, choose a pillbox (a short cylinder) as the Gaussian surface around any point P on the surface, as shown in the above figure. The pillbox is partially inside and partially outside the conductor's surface. It has a tiny cross-sectional area δS and a low height. The electrostatic field is zero just inside the surface, and it is normal to the surface with magnitude E just outside. As a result, only the pillbox's outside (circular) cross-section contributes to the total flux through the pillbox. This equals ES (positive for σ > 0, negative for σ < 0), because E is constant over the tiny area S, and E and S are parallel or antiparallel. σ δS is the charge carried by the pillbox.
According to Gauss’s law,
E\delta{S}=\frac{|\sigma|\delta{S}}{\epsilon_0}\\ E=\frac{|\sigma|}{\epsilon_0}
The fact that the electric field is perpendicular to the surface, the vector relation, equation (1) is true for both signs of σ. For σ > 0, the electric field is normal to the surface outward; for σ < 0, the electric field is normal to the surface inward.
Consider a conductor with a hollow that contains no charges. The electric field inside the cavity is zero, regardless of the size and shape of the cavity and the charge on the conductor, and the external fields in which it may be positioned. This result has already been shown in a basic case: the electric field inside a charged spherical shell is zero. The spherical symmetry of the shell is used in the proof of the result for the shell. However, as previously stated, the disappearance of the electric field in the (charge-free) cavity of a conductor is a very general result. A related result is that all charges remain only on the outer surface of a conductor with a cavity, even if the conductor is charged or charges are induced on a neutral conductor by an external field.
8The electric field inside the cavity of any conductor is zero. All charges reside only on the outer surface of a conductor with a cavity. (There are no charges placed in the cavity.) The proofs of the above-mentioned results are omitted in the above figure, but their significance is highlighted. Any cavity in a conductor is protected from outside electric effect, regardless of the charge and field configuration outside: the field inside the cavity is always zero.
Some important electrostatic properties of a conductor Electrostatic shielding is the term for this. The effect can be used to shield delicate devices from electrical interference from the outside world. The electrostatic properties of a conductor are summarized in the above figure.
Sample Problems
Problem 1: (a) A comb run through one’s dry hair attracts small bits of paper. Why? What happens if the hair is wet or if it is a rainy day? (Remember, the paper does not conduct electricity.)
(b) Ordinary rubber is an insulator. But special rubber tyres of aircraft are made slightly conducting. Why is this necessary?
(c) Vehicles carrying inflammable materials usually have metallic ropes touching the ground during motion. Why?
(d) A bird perches on a bare high power line, and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?
Solution:
(a) This is because the comb gets charged by friction. The molecules in the paper gets polarised by the charged comb, resulting in a net force of attraction. If the hair is wet, or if it is a rainy day, friction between hair and the comb reduces. The comb does not get charged, and thus it will not attract small bits of paper.
(b) To enable them to conduct charge (produced by friction) to the ground; as too much of static electricity accumulated may result in spark and result in fire.
(c) To enable them to conduct charge (produced by friction) to the ground; as too much of static electricity accumulated may result in spark and result in fire.
(d) Current passes only when there is a difference in potential.
Problem 2: A slab of material of dielectric constant K has the same area as the plates of a parallel-plate capacitor but has a thickness (3/4)d, where d is the separation of the plates. How is the capacitance changed when the slab is inserted between the plates?
Solution:
Let E0 = V0 /d be the electric field between the plates when there is no dielectric and the potential difference is V0 . If the dielectric is now inserted, the electric field in the dielectric will be E = E0 /K. The potential difference will then be
V=E_0\left(\frac{1}{4}d\right)+\frac{E_0}{K}\left(\frac{3}{4}d\right)\\ V=E_0d\left(\frac{1}{4}+\frac{3}{4}\right)\\ V=V_0\frac{K+3}{4K}
The potential difference decreases by the factor (K + 3)/K while the free charge Q0 on the plates remains unchanged. The capacitance thus increases
C=\frac{Q_0}{V}\\ C=\frac{4K}{K+3}\frac{Q_0}{V_0}\\ C=\frac{4K}{K+3}C_0
Problem 3: A 500 µC charge is at the Centre of a square of side 10 cm. Find the work done in moving a charge of 10 µC between two diagonally opposite points on the square.
Solution:
The work done in moving a charge of 10 µC between two diagonally opposite points on the square will be zero because these two points will be at equipotential.
Problem 4: Why must the electrostatic potential inside a hollow charged conductor be the same at every point?
Solution:
Because the electric field inside the hollow charged conductor is zero, no work is done in moving a small test charge within the conductor. As a result, the electrostatic potential inside a hollow charged conductor remains constant.
Problem 5:
(i) Can two equipotential surfaces intersect each other? Give reasons.
(ii) Two charges -q and + q are located at points A (0, 0, – a) and B (0, 0, +a) respectively. How much work is done in moving a test charge from point P (7, 0, 0) to Q (-3,0,0)?
Solution:
(i) No, if they intersect, the electric field will be in two distinct directions, which is incorrect. If they cross, there will be two potential values at the same place of intersection. Because this isn't conceivable, two equipotential surfaces can't meet.
(ii) Work done will be zero since both points P and Q are on the dipole's equatorial line, which has V = 0 at all points. Furthermore, because any charge's force is perpendicular to the equatorial line, no work is done.
Similar Reads
CBSE Class 12 Physics Notes 2023-24 CBSE Class 12 Physics Notes are an essential part of the study material for any student wanting to pursue a career in engineering or a related field. Physics is the subject that helps us understand our surroundings using simple and complex concepts combined. Class 12 physics introduces us to a lot o
10 min read
Chapter 1 - ELECTRIC CHARGES AND FIELDS
Electric Charge and Electric FieldElectric Field is the region around a charge in which another charge experiences an attractive or repulsive force. Electric Field is an important concept in the study of electrostatics which is the branch of physics. Electric Field despite its invisible nature, powers our homes with electricity, tra
15+ min read
Electric ChargeElectric Charge is the basic property of a matter that causes the matter to experience a force when placed in a electromagnetic field. It is the amount of electric energy that is used for various purposes. Electric charges are categorized into two types, that are, Positive ChargeNegative ChargePosit
8 min read
Conductors and InsulatorsWhen humans remove synthetic clothing or sweater, especially in dry weather, he or she often sees a spark or hear a crackling sound. With females' clothing like a polyester saree, this is essentially observed. Another example is Lightning a common form of electric discharge that seen in the sky duri
9 min read
Basic Properties of Electric ChargeElectric Charges are fundamental in the universe. The presence of electric charges are not only seen in the field of science but also in the daily lives of human beings. For instance, rubbing dry hair with a ruler ends up making some hair strands stand up and this happens because electric charges ar
4 min read
Coulomb's LawCoulombâs Law is defined as a mathematical concept that defines the electric force between charged objects. Columb's Law states that the force between any two charged particles is directly proportional to the product of the charge but is inversely proportional to the square of the distance between t
9 min read
Forces Between Multiple ChargesWhen our synthetic clothing or sweater is removed from our bodies, especially in dry weather, a spark or crackling sound appears. With females' clothing like a polyester saree, this is almost unavoidable. Lightning, in the sky during thunderstorms, is another case of electric discharge. It is an ele
10 min read
Electric FieldElectric field is a fundamental concept in physics, defining the influence that electric charges exert on their surroundings. This field has both direction and magnitude. It guides the movement of charged entities, impacting everything from the spark of static electricity to the functionality of ele
14 min read
Electric Field LinesElectric field lines are a representation used to visualize the electric field surrounding charged objects. They provide a way to understand the direction and strength of the electric field at different points in space. It helps analyze electric fields in various situations, such as around point cha
5 min read
What is Electric Flux?Electric flux is a fundamental concept in physics that helps us understand and quantify the electric field passing through a given surface. It provides a means to describe the flow of electric field lines through an area. Electric flux forms the basis of Gauss's Law, to calculate the net charge encl
12 min read
Electric DipoleAn electric dipole is defined as a pair of equal and opposite electric charges that are separated, by a small distance. An example of an electric dipole includes two atoms separated by small distances. The magnitude of the electric dipole is obtained by taking the product of either of the charge and
11 min read
Continuous Charge DistributionElectric charge is a fundamental feature of matter that regulates how elementary particles are impacted by an electric or magnetic field. Positive and negative electric charge exists in discrete natural units and cannot be manufactured or destroyed. There are two sorts of electric charges: positive
7 min read
Applications of Gauss's LawGauss's Law states that the total electric flux out of a closed surface equals the charge contained inside the surface divided by the absolute permittivity. The electric flux in an area is defined as the electric field multiplied by the surface area projected in a plane perpendicular to the field. N
9 min read
Chapter 2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE
Electric Potential EnergyElectrical potential energy is the cumulative effect of the position and configuration of a charged object and its neighboring charges. The electric potential energy of a charged object governs its motion in the local electric field.Sometimes electrical potential energy is confused with electric pot
15+ min read
Electric Potential Due to a Point ChargeElectric forces are responsible for almost every chemical reaction within the human body. These chemical reactions occur when the atoms and their charges collide together. In this process, some molecules are formed and some change their shape. Electric forces are experienced by charged bodies when t
7 min read
Electric Potential Of A Dipole and System Of ChargesElectric Potential is defined as the force experienced by a charge inside the electric field of any other charge. mathematically it is defined as the ratio of electric potential energy that is required to take a test charge from infinity to a point inside the electric field of any other charge with
7 min read
Equipotential SurfacesWhen an external force acts to do work, moving a body from a point to another against a force like spring force or gravitational force, that work gets collected or stores as the potential energy of the body. When the external force is excluded, the body moves, gaining the kinetic energy and losing a
9 min read
Potential Energy of a System of ChargesWhen an external force works to accomplish work, such as moving a body from one location to another against a force such as spring force or gravitational force, that work is collected and stored as the body's potential energy. When the external force is removed, the body moves, acquiring kinetic ene
11 min read
Potential Energy in an External FieldWhen an external force operates to conduct work, such as moving a body from one location to another against a force like spring force or gravitational force, the work is gathered and stored as potential energy in the body. When an external force is removed, the body moves, acquiring kinetic energy a
11 min read
Electrostatics of ConductorsWhen an external force is used to remove a body from a situation. Point to another in the face of a force like spring or gravitational force That work is stored in the body as potential energy. When the external environment When a force is eliminated, the body moves, gaining and losing kinetic energ
11 min read
Dielectrics and PolarisationHave you noticed how many of the insulators are made of wood, plastic, or glass? But why is that? When we utilise wood or plastic, why don't we receive electric shocks? Why do you only get severe shocks from metal wires? We'll look at dielectrics, polarisation, the dielectric constant, and more in t
10 min read
Capacitor and CapacitanceCapacitor and Capacitance are related to each other as capacitance is nothing but the ability to store the charge of the capacitor. Capacitors are essential components in electronic circuits that store electrical energy in the form of an electric charge. They are widely used in various applications,
11 min read
What is a Parallel Plate Capacitor?Answer: A Parallel Plate Capacitor is a capacitor with two parallel conducting plates separated by an insulating material and capable of storing electrical charge. Capacitance can be defined in Layman's terms as a physical quantity that indicates the ability of a component or circuit to collect and
8 min read
Capacitors in Series and ParallelCapacitors are special devices that can hold electric charges for instantaneous release in an electric circuit. We can easily connect various capacitors together as we connected the resistor together. The capacitor can be connected in series or parallel combinations and can be connected as a mix of
7 min read
Energy stored in a CapacitorCapacitors are used in almost every electronic device around us. From a fan to a chip, there are lots of capacitors of different sizes around us. Theoretically, the basic function of the capacitor is to store energy. Its common usage includes energy storage, voltage spike protection, and signal filt
6 min read
Chapter 3 - CURRENT ELECTRICITY
Electric CurrentElectricity has become an essential part of our everyday life, changing the way we live and work. In the past, people depended on fire for light, warmth, and cooking. Today, we can easily turn on lights, heat our homes, and charge our devices with just a switch or button. This is all possible becaus
10 min read
Electric Current in ConductorsElectric current in conductors is the movement of electric charge through a substance, usually a metallic wire or other conductor. Electric current is the rate at which an electric charge flows past a certain point in a conductor, and it is measured in amperes. When a potential difference (voltage)
8 min read
Ohm's Law - Definition, Formula, Applications, LimitationsAccording to Ohm's law, the voltage or potential difference between two locations is proportional to the current of electricity flowing through the resistance, and the resistance of the circuit is proportional to the current or electricity travelling through the resistance. V=IR is the formula for O
5 min read
Drift VelocityDrift Velocity as the name suggests refers to the slow movement of electrons in the conductor when an Electromotive force(emf) is introduced. Electrons do not move in a straight line in the conductor, but they move randomly in the conductor colliding with the other electrons and atoms exchanging ene
12 min read
Limitations of Ohm's LawOhmâs Law is a relationship between three physical phenomena: current, voltage, and resistance. This relationship was introduced by German physicist George Simon Ohm. That is why the law is well known as Ohmâs law. It states that the amount of steady current through a large number of materials is di
10 min read
ResistivityResistance is the physical property of the material which opposes the current flow in the circuit whereas resistivity is the intrinsic property that helps us understand the relation between the dimension of the substance and the resistance offered by it. In this article, we will learn about Resista
9 min read
Temperature Dependence of ResistanceDevices such as batteries, cells, etc. are essential for maintaining a potential difference across the circuit and are referred to as voltage sources. When a voltage source is connected across a conductor, it creates an electric field which causes the charges to move and this causes current. The val
5 min read
Electrical Energy and PowerElectric energy is the most important form of energy and is widely used in almost all the electrical devices around us. These devices have a rating written on them. That rating is expressed in Watts and intuitively explains the amount of electricity the device will consume. Bigger devices like AC, r
9 min read
Electromotive ForceElectromotive Force or EMF is the work done by the per unit charge while moving from the positive end to the negative end of the battery. It can also be defined as the energy gain per unit charge while moving from the positive end to the negative end of the battery. The battery or the electric gener
10 min read
Combination of Cells in Series and ParallelThere are many resistances in complex electrical circuits. There are methods to calculate the equivalent resistances in case multiple resistances are connected in series or parallel or sometimes in a combination of series and parallel. In many situations, batteries or different types of voltage sour
6 min read
Kirchhoff's LawsKirchhoff's Laws are the basic laws used in electrostatics to solve complex circuit questions. Kirchhoff's Laws were given by Gustav Robert Kirchhoff who was a famous German Physicist. He gave us two laws Kirchhoffâs Current Law and Kirchhoffâs Voltage Law which are discussed in this article.These l
8 min read
Wheatstone BridgeWheatstone bridge is a device that is used to find the resistance of a conductor, in 1842, scientist Wheatstone proposed a theory, which is called the principle of Wheatstone bridge after his name. we can prove or establish the formula for Wheatstone by using Kirchhoff laws. Wheatstone bridge is sim
10 min read
Chapter 4 - MOVING CHARGES AND MAGNETISM
Magnetic Force on a Current carrying WireWhen a charge is moving under the influence of a magnetic field. It experiences forces, which are perpendicular to its movement. This property of charge is exploited in a lot of fields, for example, this phenomenon is used in the making of motors which in turn are useful for producing mechanical for
5 min read
Motion of a Charged Particle in a Magnetic FieldThis has been already learned about the interaction of electric and magnetic fields, as well as the motion of charged particles in the presence of both electric and magnetic fields. We have also deduced the relationship of the force acting on the charged particle, which is given by the Lorentz force
9 min read
Biot-Savart LawThe Biot-Savart equation expresses the magnetic field created by a current-carrying wire. This conductor or wire is represented as a vector quantity called the current element. Lets take a look at the law and formula of biot-savart law in detail, Biot-Savart Law The magnitude of magnetic induction a
7 min read
Magnetic Field on the Axis of a Circular Current LoopMoving charges is an electric current that passes through a fixed point in a fixed period of time. Moving charges are responsible for establishing the magnetic field. The magnetic field is established due to the force exerted by the flow of moving charges. As the magnetic field is established moving
7 min read
Ampere's Circuital Law and Problems on ItAndré-Marie Ampere, a French physicist, proposed Ampere's Circuital Law. Ampere was born in Lyon, France, on January 20, 1775. His father educated him at home, and he showed an affinity for mathematics at a young age. Ampere was a mathematician and physicist best known for his work on electrodynamic
5 min read
Force between Two Parallel Current Carrying ConductorsMoving charges produce an electric field and the rate of flow of charge is known as current. This is the basic concept in Electrostatics. The magnetic effect of electric current is the other important phenomenon related to moving electric charges. Magnetism is generated due to the flow of current. M
8 min read
Current Loop as a Magnetic DipoleWhen a charge move it generates an electric field and the rate of flow of charge is the current in the electric field. This is the basic concept in Electrostatics. The magnetic effect of electric current is the other important concept related to moving electric charges. Magnetism is generated due to
11 min read
Moving Coil GalvanometerHans Christian Oersted discovered in 1820 that a current-carrying conducting wire produces a magnetic field around it. His findings from his experiments are as follows: The magnetic compass needle is aligned tangent to an imaginary circle centered on the current-carrying cable.When the current is re
10 min read
Chapter 5 - MAGNETISM AND MATTER
CHAPTER 6 - ELECTROMAGNETIC INDUCTION
Experiments of Faraday and HenryFor a long time, electricity and magnetism were thought to be separate and unrelated phenomena. Experiments on electric current by Oersted, Ampere and a few others in the early decades of the nineteenth century established the fact that electricity and magnetism are inter-related. They discovered th
5 min read
Magnetic FluxMagnetic Flux is defined as the surface integral of the normal component of the Magnetic Field(B) propagating through that surface. It is indicated by Ï or ÏB. Its SI unit is Weber(Wb). The study of Magnetic Flux is done in Electromagnetism which is a branch of physics that deals with the relation b
6 min read
Faradayâs Laws of Electromagnetic InductionFaraday's Law of Electromagnetic Induction is the basic law of electromagnetism that is used to explain the working of various equipment that includes an electric motor, electric generator, etc. Faraday's law was given by an English scientist Michael Faraday in 1831. According to Faraday's Law of El
10 min read
Lenz's LawLenz law was given by the German scientist Emil Lenz in 1834 this law is based on the principle of conservation of energy and is in accordance with Newton's third law. Lenz law is used to give the direction of induced current in the circuit. In this article, let's learn about Lenz law its formula, e
7 min read
Motional Electromotive ForceThe process of induction occurs when a change in magnetic flux causes an emf to oppose that change. One of the main reasons for the induction process in motion. We can say, for example, that a magnet moving toward a coil generates an emf, and that a coil moving toward a magnet creates a comparable e
14 min read
Inductance - Definition, Derivation, Types, ExamplesMagnetism has a mystical quality about it. Its capacity to change metals like iron, cobalt, and nickel when touched piques children's interest. Repulsion and attraction between the magnetic poles by observing the shape of the magnetic field created by the iron filling surrounding the bar magnet will
13 min read
AC Generator - Principle, Construction, Working, ApplicationsA changing magnetic flux produces a voltage or current in a conductor, which is known as electromagnetic induction. It can happen when a solenoid's magnetic flux is changed by moving a magnet. There will be no generated voltage (electrostatic potential difference) across an electrical wire if the ma
7 min read
CHAPTER 7 - ALTERNATING CURRENT
AC Voltage Applied to a ResistorAlternating Currents are used almost as a standard by electricity distribution companies. In India, 50 Hz Alternating Current is used for domestic and industrial power supply. Many of our devices are in fact nothing but resistances. These resistances cause some voltage drop but since the voltage thi
5 min read
Phasors | Definition, Examples & DiagramPhasor analysis is used to determine the steady-state response to a linear circuit functioning on sinusoidal sources with frequency (f). It is very common. For example, one can use phasor analysis to differentiate the frequency response of a circuit by performing phasor analysis over a range of freq
10 min read
AC Voltage Applied to an InductorAlternating Currents and Voltages vary and change their directions with time. They are widely used in modern-day devices and electrical systems because of their numerous advantages. Circuits in everyday life consist of resistances, capacitors, and inductances. Inductors are devices that store energy
5 min read
AC Voltage Applied to a CapacitorAlternating Currents and Voltages vary and change their directions with time. They are widely used in modern-day devices and electrical systems because of their numerous advantages. Circuits in everyday life consist of resistances, capacitors, and inductance. Capacitors are the devices that accumula
6 min read
Series LCR CircuitsIn contrast to direct current (DC), which travels solely in one direction, Alternating Current (AC) is an electric current that occasionally reverses direction and alters its magnitude constantly over time. Alternating current is the type of electricity that is delivered to companies and homes, and
8 min read
Power Factor in AC circuitThe power factor is determined by the cosine of the phase angle between voltage and current. In AC circuits, the phase angle between voltage and current is aligned, or in other words, zero. But, practically there exists some phase difference between voltage and current. The value of the power factor
8 min read
TransformerA transformer is the simplest device that is used to transfer electrical energy from one alternating-current circuit to another circuit or multiple circuits, through the process of electromagnetic induction. A transformer works on the principle of electromagnetic induction to step up or step down th
15+ min read
CHAPTER 8 - ELECTROMAGNETIC WAVES
CHAPTER 9 - RAY OPTICS AND OPTICAL INSTRUMENTS