Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Print Longest Palindromic Subsequence
Next article icon

Minimum insertions to form a palindrome

Last Updated : 09 May, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a string s, the task is to find the minimum number of characters to be inserted to convert it to a palindrome.

Examples:

Input: s = “geeks”
Output: 3
Explanation: “skgeegks” is a palindromic string, which requires 3 insertions.

Input: s= “abcd”
Output: 3
Explanation: “abcdcba” is a palindromic string.

Input: s= “aba”
Output: 0
Explanation: Given string is already a palindrome hence no insertions are required.

Table of Content

  • Using Recursion – O(2^n) Time and O(n) Space
  • Using Top-Down DP (Memoization) – O(n^2) Time and O(n^2) Space
  • Using Bottom-Up DP (Tabulation) – O(n^2) Time and O(n^2) Space
  • Using Space Optimized DP – O(n ^ 2) Time and O(n) Space

Using Recursion – O(2^n) Time and O(n) Space

The minimum number of insertions in the string str[l…..h] can be given as:  

  • if str[l] is equal to str[h] findMinInsertions(str[l+1…..h-1])
  • otherwise, min(findMinInsertions(str[l…..h-1]), findMinInsertions(str[l+1…..h])) + 1
C++
// C++ approach to find Minimum  // insertions to form a palindrome #include<bits/stdc++.h> using namespace std;  // Recursive function to find   // minimum number of insertions int minRecur(string &s, int l, int h) {      	// Base case     if (l >= h) return 0;      	// if first and last char are same    	// then no need to insert element   	if(s[l] == s[h]) {       	return minRecur(s, l + 1, h - 1);     }      	// Insert at begining or insert at end   	return min(minRecur(s, l + 1, h),                 minRecur(s, l, h - 1)) + 1; }  int findMinInsertions(string &s) {  	return minRecur(s, 0, s.size() - 1); }  int main() {     string s = "geeks";     cout << findMinInsertions(s);     return 0; } 
Java
// Java approach to find Minimum  // insertions to form a palindrome class GfG {      // Recursive function to find       // minimum number of insertions     static int minRecur(String s, int l, int h) {                // Base case         if (l >= h) return 0;                // if first and last char are same          // then no need to insert element         if (s.charAt(l) == s.charAt(h)) {             return minRecur(s, l + 1, h - 1);         }                // Insert at begining or insert at end         return Math.min(minRecur(s, l + 1, h),                          minRecur(s, l, h - 1)) + 1;     }      static int findMinInsertions(String s) {         return minRecur(s, 0, s.length() - 1);     }      public static void main(String[] args) {         String s = "geeks";         System.out.println(findMinInsertions(s));     } } 
Python
# Python approach to find Minimum  # insertions to form a palindrome  # Recursive function to find   # minimum number of insertions def minRecur(s, l, h):        # Base case     if l >= h:         return 0        # if first and last char are same      # then no need to insert element     if s[l] == s[h]:         return minRecur(s, l + 1, h - 1)        # Insert at begining or insert at end     return min(minRecur(s, l + 1, h),                 minRecur(s, l, h - 1)) + 1  def findMinInsertions(s):     return minRecur(s, 0, len(s) - 1)  if __name__ == "__main__":     s = "geeks"     print(findMinInsertions(s)) 
C#
// C# approach to find Minimum  // insertions to form a palindrome using System;  class GfG {      // Recursive function to find       // minimum number of insertions     static int minRecur(string s, int l, int h) {                // Base case         if (l >= h) return 0;                // if first and last char are same          // then no need to insert element         if (s[l] == s[h]) {             return minRecur(s, l + 1, h - 1);         }                // Insert at begining or insert at end         return Math.Min(minRecur(s, l + 1, h),                          minRecur(s, l, h - 1)) + 1;     }      static int findMinInsertions(string s) {         return minRecur(s, 0, s.Length - 1);     }      static void Main(string[] args) {         string s = "geeks";         Console.WriteLine(findMinInsertions(s));     } } 
JavaScript
// JavaScript approach to find Minimum  // insertions to form a palindrome  // Recursive function to find   // minimum number of insertions function minRecur(s, l, h) {        // Base case     if (l >= h) return 0;        // if first and last char are same      // then no need to insert element     if (s[l] === s[h]) {         return minRecur(s, l + 1, h - 1);     }        // Insert at begining or insert at end     return Math.min(minRecur(s, l + 1, h),                      minRecur(s, l, h - 1)) + 1; }  function findMinInsertions(s) {     return minRecur(s, 0, s.length - 1); }  const s = "geeks"; console.log(findMinInsertions(s)); 

Output
3

Using Top-Down DP (Memoization) – O(n^2) Time and O(n^2) Space

If we notice carefully, we can observe that the above recursive solution holds the following two properties of Dynamic Programming:

1. Optimal Substructure: The minimum number of insertions required to make the substring str[l…h] a palindrome depends on the optimal solutions of its subproblems. If str[l] is equal to str[h] then we call recursive call on l + 1 and h – 1 other we make two recursive call to get optimal answer.

2. Overlapping Subproblems: When using a recursive approach, we notice that certain subproblems are computed multiple times. To avoid this redundancy, we can use memoization by storing the results of already computed subproblems in a 2D array.

The problem involves changing two parameters: l (starting index) and h (ending index). Hence, we need to create a 2D array of size (n x n) to store the results, where n is the length of the string. By using this 2D array, we can efficiently reuse previously computed results and optimize the solution.

C++
// C++ approach to find Minimum  // insertions to form a palindrome #include<bits/stdc++.h> using namespace std;  // Recursive function to find   // minimum number of insertions int minRecur(string &s, int l, int h, vector<vector<int>> &memo) {      	// Base case     if (l >= h) return 0;          // If value is memoized      if (memo[l][h] != -1) return memo[l][h];      	// if first and last char are same    	// then no need to insert element   	if(s[l] == s[h]) {       	return memo[l][h] = minRecur(s, l + 1, h - 1, memo);     }      	// Insert at begining or insert at end   	return memo[l][h] = min(minRecur(s, l + 1, h, memo),                 minRecur(s, l, h - 1, memo)) + 1; }  int findMinInsertions(string &s) {     int n = s.length();     vector<vector<int>> memo(n, vector<int>(n, -1));       	return minRecur(s, 0, n - 1, memo); }  int main() {     string s = "geeks";     cout << findMinInsertions(s);     return 0; } 
Java
// Java approach to find Minimum  // insertions to form a palindrome class GfG {      // Recursive function to find       // minimum number of insertions     static int minRecur(String s, int l, int h, int[][] memo) {                // Base case         if (l >= h) return 0;                  // If value is memoized          if (memo[l][h] != -1) return memo[l][h];                // if first and last char are same          // then no need to insert element         if (s.charAt(l) == s.charAt(h)) {             return memo[l][h] = minRecur(s, l + 1, h - 1, memo);         }                // Insert at begining or insert at end         return memo[l][h] = Math.min(minRecur(s, l + 1, h, memo),                                       minRecur(s, l, h - 1, memo)) + 1;     }      static int findMinInsertions(String s) {         int n = s.length();         int[][] memo = new int[n][n];         for (int i = 0; i < n; i++) {             for (int j = 0; j < n; j++) {                 memo[i][j] = -1;             }         }         return minRecur(s, 0, n - 1, memo);     }      public static void main(String[] args) {         String s = "geeks";         System.out.println(findMinInsertions(s));     } } 
Python
# Python approach to find Minimum  # insertions to form a palindrome  # Recursive function to find   # minimum number of insertions def minRecur(s, l, h, memo):        # Base case     if l >= h:         return 0      # If value is memoized      if memo[l][h] != -1:         return memo[l][h]        # if first and last char are same      # then no need to insert element     if s[l] == s[h]:         memo[l][h] = minRecur(s, l + 1, h - 1, memo)         return memo[l][h]        # Insert at begining or insert at end     memo[l][h] = min(minRecur(s, l + 1, h, memo),                       minRecur(s, l, h - 1, memo)) + 1     return memo[l][h]  def findMinInsertions(s):     n = len(s)     memo = [[-1] * n for _ in range(n)]     return minRecur(s, 0, n - 1, memo)  if __name__ == "__main__":     s = "geeks"     print(findMinInsertions(s)) 
C#
// C# approach to find Minimum  // insertions to form a palindrome using System;  class GfG {      // Recursive function to find       // minimum number of insertions     static int minRecur(string s, int l, int h, int[,] memo) {                // Base case         if (l >= h) return 0;          // If value is memoized          if (memo[l, h] != -1) return memo[l, h];                // if first and last char are same          // then no need to insert element         if (s[l] == s[h]) {             return memo[l, h] = minRecur(s, l + 1, h - 1, memo);         }                // Insert at begining or insert at end         return memo[l, h] = Math.Min(minRecur(s, l + 1, h, memo),                                       minRecur(s, l, h - 1, memo)) + 1;     }      static int findMinInsertions(string s) {         int n = s.Length;         int[,] memo = new int[n, n];         for (int i = 0; i < n; i++) {             for (int j = 0; j < n; j++) {                 memo[i, j] = -1;             }         }         return minRecur(s, 0, n - 1, memo);     }      static void Main(string[] args) {         string s = "geeks";         Console.WriteLine(findMinInsertions(s));     } } 
JavaScript
// JavaScript approach to find Minimum  // insertions to form a palindrome  // Recursive function to find   // minimum number of insertions function minRecur(s, l, h, memo) {        // Base case     if (l >= h) return 0;          // If value is memoized      if (memo[l][h] !== -1) return memo[l][h];        // if first and last char are same      // then no need to insert element     if (s[l] === s[h]) {         return memo[l][h] = minRecur(s, l + 1, h - 1, memo);     }        // Insert at begining or insert at end     return memo[l][h] = Math.min(minRecur(s, l + 1, h, memo),                                   minRecur(s, l, h - 1, memo)) + 1; }  function findMinInsertions(s) {     const n = s.length;     const memo = Array.from({ length: n }, () => Array(n).fill(-1));     return minRecur(s, 0, n - 1, memo); }  const s = "geeks"; console.log(findMinInsertions(s)); 

Output
3

Using Bottom-Up DP (Tabulation) – O(n^2) Time and O(n^2) Space

The iterative approach for finding the minimum number of insertions needed to make a string palindrome follows a similar concept to the recursive solution but builds the solution in a bottom-up manner using a 2D dynamic programming table.

Base Case:

  • if l == h than dp[l][h] = 0. Where 0 <= l <= n – 1
  • If the substring has two characters (h == l + 1), we check if they are the same. If they are, dp[l][h] = 0, otherwise, dp[l][h] = 1.

Recursive Case:

  • If str[l] == str[h], then dp[l][h] = dp[l+1][h-1].
  • Otherwise, dp[l][h] = min(dp[l+1][h], dp[l][h-1]) + 1. 
C++
// C++ approach to find Minimum  // insertions to form a palindrome #include<bits/stdc++.h> using namespace std;  // Function to find minimum insertions  // to make string palindrome int findMinInsertions(string &s) {     int n = s.size();          // dp[i][j] will store the minimum number of insertions needed     // to convert str[i..j] into a palindrome     vector<vector<int>> dp(n, vector<int>(n, 0));      // len is the length of the substring     for (int len = 2; len <= n; len++) {         for (int l = 0; l <= n - len; l++) {                      	// ending index of the current substring             int h = l + len - 1;               // If the characters at both ends are            	// equal, no new insertions needed             if (s[l] == s[h]) {                 dp[l][h] = dp[l + 1][h - 1];             } else {                                  // Insert at the beginning or at the end                 dp[l][h] = min(dp[l + 1][h], dp[l][h - 1]) + 1;             }         }     }      // The result is in dp[0][n-1] which    	// represents the entire string     return dp[0][n - 1]; }  int main() {     string s = "geeks";     cout << findMinInsertions(s);     return 0; } 
Java
// Java approach to find Minimum  // insertions to form a palindrome class GfG {      // Function to find minimum insertions      // to make string palindrome     static int findMinInsertions(String s) {         int n = s.length();                  // dp[i][j] will store the minimum number of insertions needed         // to convert str[i..j] into a palindrome         int[][] dp = new int[n][n];          // len is the length of the substring         for (int len = 2; len <= n; len++) {             for (int l = 0; l <= n - len; l++) {                                // ending index of the current substring                 int h = l + len - 1;                   // If the characters at both ends are                  // equal, no new insertions needed                 if (s.charAt(l) == s.charAt(h)) {                     dp[l][h] = dp[l + 1][h - 1];                 } else {                                          // Insert at the beginning or at the end                     dp[l][h] = Math.min(dp[l + 1][h], dp[l][h - 1]) + 1;                 }             }         }          // The result is in dp[0][n-1] which          // represents the entire string         return dp[0][n - 1];     }      public static void main(String[] args) {         String s = "geeks";         System.out.println(findMinInsertions(s));     } } 
Python
# Python approach to find Minimum  # insertions to form a palindrome  # Function to find minimum insertions  # to make string palindrome def findMinInsertions(s):     n = len(s)          # dp[i][j] will store the minimum number of insertions needed     # to convert str[i..j] into a palindrome     dp = [[0] * n for _ in range(n)]      # len is the length of the substring     for length in range(2, n + 1):         for l in range(n - length + 1):                          # ending index of the current substring             h = l + length - 1              # If the characters at both ends are              # equal, no new insertions needed             if s[l] == s[h]:                 dp[l][h] = dp[l + 1][h - 1]             else:                                  # Insert at the beginning or at the end                 dp[l][h] = min(dp[l + 1][h], dp[l][h - 1]) + 1      # The result is in dp[0][n-1] which      # represents the entire string     return dp[0][n - 1]  if __name__ == "__main__":     s = "geeks"     print(findMinInsertions(s)) 
C#
// C# approach to find Minimum  // insertions to form a palindrome using System;  class MainClass {      // Function to find minimum insertions      // to make string palindrome     static int findMinInsertions(string s) {         int n = s.Length;                  // dp[i,j] will store the minimum number of insertions needed         // to convert str[i..j] into a palindrome         int[,] dp = new int[n, n];          // len is the length of the substring         for (int len = 2; len <= n; len++) {             for (int l = 0; l <= n - len; l++) {                                // ending index of the current substring                 int h = l + len - 1;                   // If the characters at both ends are                  // equal, no new insertions needed                 if (s[l] == s[h]) {                     dp[l, h] = dp[l + 1, h - 1];                 } else {                                          // Insert at the beginning or at the end                     dp[l, h] = Math.Min(dp[l + 1, h], dp[l, h - 1]) + 1;                 }             }         }          // The result is in dp[0,n-1] which          // represents the entire string         return dp[0, n - 1];     }      static void Main(string[] args) {         string s = "geeks";         Console.WriteLine(findMinInsertions(s));     } } 
JavaScript
// JavaScript approach to find Minimum  // insertions to form a palindrome  // Function to find minimum insertions  // to make string palindrome function findMinInsertions(s) {     const n = s.length;          // dp[i][j] will store the minimum number of insertions needed     // to convert str[i..j] into a palindrome     const dp = Array.from({ length: n }, () => Array(n).fill(0));      // len is the length of the substring     for (let len = 2; len <= n; len++) {         for (let l = 0; l <= n - len; l++) {                        // ending index of the current substring             const h = l + len - 1;              // If the characters at both ends are              // equal, no new insertions needed             if (s[l] === s[h]) {                 dp[l][h] = dp[l + 1][h - 1];             } else {                                  // Insert at the beginning or at the end                 dp[l][h] = Math.min(dp[l + 1][h], dp[l][h - 1]) + 1;             }         }     }      // The result is in dp[0][n-1] which      // represents the entire string     return dp[0][n - 1]; }  const s = "geeks"; console.log(findMinInsertions(s)); 

Output
3

Using Space Optimized DP – O(n ^ 2) Time and O(n) Space

The idea is to reuse the array in such a way that we store the results for the previous row in the same array while iterating through the columns.

C++
// C++ approach to find Minimum  // insertions to form a palindrome #include<bits/stdc++.h> using namespace std;  // Function to find minimum insertions  // to make string palindrome int findMinInsertions(string &s) {     int n = s.size();     vector<int> dp(n, 0);          // Iterate over each character from right to left     for (int l = n - 2; l >= 0; l--) {              	// This represents dp[l+1][h-1] from the previous row         int prev = 0;          for (int h = l + 1; h < n; h++) {                      	// Save current dp[h] before overwriting             int temp = dp[h];                           if (s[l] == s[h]) {                              	// No new insertion needed if characters match                 dp[h] = prev;              } else {                              	// Take min of two cases + 1                 dp[h] = min(dp[h], dp[h - 1]) + 1;              }                        	// Update prev for the next column             prev = temp;          }     }          return dp[n - 1]; }  int main() {     string s = "geeks";     cout << findMinInsertions(s);     return 0; } 
Java
// Java approach to find Minimum  // insertions to form a palindrome class GfG {      // Function to find minimum insertions      // to make string palindrome     static int findMinInsertions(String s) {         int n = s.length();         int[] dp = new int[n];                  // Iterate over each character from right to left         for (int l = n - 2; l >= 0; l--) {                          // This represents dp[l+1][h-1] from the previous row             int prev = 0;              for (int h = l + 1; h < n; h++) {                                  // Save current dp[h] before overwriting                 int temp = dp[h];                                   if (s.charAt(l) == s.charAt(h)) {                                          // No new insertion needed if characters match                     dp[h] = prev;                  } else {                                          // Take min of two cases + 1                     dp[h] = Math.min(dp[h], dp[h - 1]) + 1;                  }                                  // Update prev for the next column                 prev = temp;              }         }                  return dp[n - 1];     }      public static void main(String[] args) {         String s = "geeks";         System.out.println(findMinInsertions(s));     } } 
Python
# Python approach to find Minimum  # insertions to form a palindrome  # Function to find minimum insertions  # to make string palindrome def findMinInsertions(s):     n = len(s)     dp = [0] * n      # Iterate over each character from right to left     for l in range(n - 2, -1, -1):                  # This represents dp[l+1][h-1] from the previous row         prev = 0          for h in range(l + 1, n):                          # Save current dp[h] before overwriting             temp = dp[h]                           if s[l] == s[h]:                                  # No new insertion needed if characters match                 dp[h] = prev              else:                                  # Take min of two cases + 1                 dp[h] = min(dp[h], dp[h - 1]) + 1                           # Update prev for the next column             prev = temp       return dp[n - 1]  if __name__ == "__main__":     s = "geeks"     print(findMinInsertions(s)) 
C#
// C# approach to find Minimum  // insertions to form a palindrome using System;  class GfG {      // Function to find minimum insertions      // to make string palindrome     static int findMinInsertions(string s) {         int n = s.Length;         int[] dp = new int[n];          // Iterate over each character from right to left         for (int l = n - 2; l >= 0; l--) {                          // This represents dp[l+1][h-1] from the previous row             int prev = 0;              for (int h = l + 1; h < n; h++) {                                  // Save current dp[h] before overwriting                 int temp = dp[h];                                   if (s[l] == s[h]) {                                          // No new insertion needed if characters match                     dp[h] = prev;                  } else {                                          // Take min of two cases + 1                     dp[h] = Math.Min(dp[h], dp[h - 1]) + 1;                  }                                  // Update prev for the next column                 prev = temp;              }         }          return dp[n - 1];     }      static void Main(string[] args) {         string s = "geeks";         Console.WriteLine(findMinInsertions(s));     } } 
JavaScript
// JavaScript approach to find Minimum  // insertions to form a palindrome  // Function to find minimum insertions  // to make string palindrome function findMinInsertions(s) {     const n = s.length;     const dp = new Array(n).fill(0);      // Iterate over each character from right to left     for (let l = n - 2; l >= 0; l--) {                  // This represents dp[l+1][h-1] from the previous row         let prev = 0;          for (let h = l + 1; h < n; h++) {                          // Save current dp[h] before overwriting             let temp = dp[h];                           if (s[l] === s[h]) {                                  // No new insertion needed if characters match                 dp[h] = prev;              } else {                                  // Take min of two cases + 1                 dp[h] = Math.min(dp[h], dp[h - 1]) + 1;              }                          // Update prev for the next column             prev = temp;          }     }      return dp[n - 1]; }  const s = "geeks"; console.log(findMinInsertions(s)); 

Output
3

Related article: 

  • Minimum number of Appends needed to make a string palindrome


Next Article
Print Longest Palindromic Subsequence
author
kartik
Improve
Article Tags :
  • DSA
  • Dynamic Programming
  • Strings
  • Amazon
  • Google
  • palindrome
Practice Tags :
  • Amazon
  • Google
  • Dynamic Programming
  • palindrome
  • Strings

Similar Reads

  • Palindrome String Coding Problems
    A string is called a palindrome if the reverse of the string is the same as the original one. Example: “madam”, “racecar”, “12321”. Properties of a Palindrome String:A palindrome string has some properties which are mentioned below: A palindrome string has a symmetric structure which means that the
    2 min read
  • Palindrome String
    Given a string s, the task is to check if it is palindrome or not. Example: Input: s = "abba"Output: 1Explanation: s is a palindrome Input: s = "abc" Output: 0Explanation: s is not a palindrome Using Two-Pointers - O(n) time and O(1) spaceThe idea is to keep two pointers, one at the beginning (left)
    14 min read
  • Check Palindrome by Different Language

    • Palindrome Number Program in C
      Write a C program to check whether a given number is a palindrome or not. Palindrome numbers are those numbers which after reversing the digits equals the original number. Examples Input: 121Output: YesExplanation: The number 121 remains the same when its digits are reversed. Input: 123Output: NoExp
      4 min read

    • C Program to Check for Palindrome String
      A string is said to be palindrome if the reverse of the string is the same as the string. In this article, we will learn how to check whether the given string is palindrome or not using C program. The simplest method to check for palindrome string is to reverse the given string and store it in a tem
      4 min read

    • C++ Program to Check if a Given String is Palindrome or Not
      A string is said to be palindrome if the reverse of the string is the same as the original string. In this article, we will check whether the given string is palindrome or not in C++. Examples Input: str = "ABCDCBA"Output: "ABCDCBA" is palindromeExplanation: Reverse of the string str is "ABCDCBA". S
      4 min read

    • Java Program to Check Whether a String is a Palindrome
      A string in Java can be called a palindrome if we read it from forward or backward, it appears the same or in other words, we can say if we reverse a string and it is identical to the original string for example we have a string s = "jahaj " and when we reverse it s = "jahaj"(reversed) so they look
      8 min read

    Easy Problems on Palindrome

    • Sentence Palindrome
      Given a sentence s, the task is to check if it is a palindrome sentence or not. A palindrome sentence is a sequence of characters, such as a word, phrase, or series of symbols, that reads the same backward as forward after converting all uppercase letters to lowercase and removing all non-alphanumer
      9 min read
    • Check if actual binary representation of a number is palindrome
      Given a non-negative integer n. The problem is to check if binary representation of n is palindrome or not. Note that the actual binary representation of the number is being considered for palindrome checking, no leading 0’s are being considered. Examples : Input : 9 Output : Yes (9)10 = (1001)2 Inp
      6 min read
    • Print longest palindrome word in a sentence
      Given a string str, the task is to print longest palindrome word present in the string str.Examples: Input : Madam Arora teaches Malayalam Output: Malayalam Explanation: The string contains three palindrome words (i.e., Madam, Arora, Malayalam) but the length of Malayalam is greater than the other t
      14 min read
    • Count palindrome words in a sentence
      Given a string str and the task is to count palindrome words present in the string str. Examples: Input : Madam Arora teaches malayalam Output : 3 The string contains three palindrome words (i.e., Madam, Arora, malayalam) so the count is three. Input : Nitin speaks malayalam Output : 2 The string co
      5 min read
    • Check if characters of a given string can be rearranged to form a palindrome
      Given a string, Check if the characters of the given string can be rearranged to form a palindrome. For example characters of "geeksogeeks" can be rearranged to form a palindrome "geeksoskeeg", but characters of "geeksforgeeks" cannot be rearranged to form a palindrome. Recommended PracticeAnagram P
      14 min read
    • Lexicographically first palindromic string
      Rearrange the characters of the given string to form a lexicographically first palindromic string. If no such string exists display message "no palindromic string". Examples: Input : malayalam Output : aalmymlaa Input : apple Output : no palindromic string Simple Approach: 1. Sort the string charact
      13 min read
    geeksforgeeks-footer-logo
    Corporate & Communications Address:
    A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
    Registered Address:
    K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
    GFG App on Play Store GFG App on App Store
    Advertise with us
    • Company
    • About Us
    • Legal
    • Privacy Policy
    • In Media
    • Contact Us
    • Advertise with us
    • GFG Corporate Solution
    • Placement Training Program
    • Languages
    • Python
    • Java
    • C++
    • PHP
    • GoLang
    • SQL
    • R Language
    • Android Tutorial
    • Tutorials Archive
    • DSA
    • Data Structures
    • Algorithms
    • DSA for Beginners
    • Basic DSA Problems
    • DSA Roadmap
    • Top 100 DSA Interview Problems
    • DSA Roadmap by Sandeep Jain
    • All Cheat Sheets
    • Data Science & ML
    • Data Science With Python
    • Data Science For Beginner
    • Machine Learning
    • ML Maths
    • Data Visualisation
    • Pandas
    • NumPy
    • NLP
    • Deep Learning
    • Web Technologies
    • HTML
    • CSS
    • JavaScript
    • TypeScript
    • ReactJS
    • NextJS
    • Bootstrap
    • Web Design
    • Python Tutorial
    • Python Programming Examples
    • Python Projects
    • Python Tkinter
    • Python Web Scraping
    • OpenCV Tutorial
    • Python Interview Question
    • Django
    • Computer Science
    • Operating Systems
    • Computer Network
    • Database Management System
    • Software Engineering
    • Digital Logic Design
    • Engineering Maths
    • Software Development
    • Software Testing
    • DevOps
    • Git
    • Linux
    • AWS
    • Docker
    • Kubernetes
    • Azure
    • GCP
    • DevOps Roadmap
    • System Design
    • High Level Design
    • Low Level Design
    • UML Diagrams
    • Interview Guide
    • Design Patterns
    • OOAD
    • System Design Bootcamp
    • Interview Questions
    • Inteview Preparation
    • Competitive Programming
    • Top DS or Algo for CP
    • Company-Wise Recruitment Process
    • Company-Wise Preparation
    • Aptitude Preparation
    • Puzzles
    • School Subjects
    • Mathematics
    • Physics
    • Chemistry
    • Biology
    • Social Science
    • English Grammar
    • Commerce
    • World GK
    • GeeksforGeeks Videos
    • DSA
    • Python
    • Java
    • C++
    • Web Development
    • Data Science
    • CS Subjects
    @GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
    We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
    Lightbox
    Improvement
    Suggest Changes
    Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
    geeksforgeeks-suggest-icon
    Create Improvement
    Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
    geeksforgeeks-improvement-icon
    Suggest Changes
    min 4 words, max Words Limit:1000

    Thank You!

    Your suggestions are valuable to us.

    What kind of Experience do you want to share?

    Interview Experiences
    Admission Experiences
    Career Journeys
    Work Experiences
    Campus Experiences
    Competitive Exam Experiences