Primality Test | Set 3 (Miller–Rabin)
Last Updated : 14 Nov, 2022
Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.
Primality Test | Set 1 (Introduction and School Method)
Primality Test | Set 2 (Fermat Method)
In this post, the Miller-Rabin method is discussed. This method is a probabilistic method ( like Fermat), but it is generally preferred over Fermat's method.
Algorithm:
// It returns false if n is composite and returns true if n // is probably prime. k is an input parameter that determines // accuracy level. Higher value of k indicates more accuracy. bool isPrime(int n, int k) 1) Handle base cases for n < 3 2) If n is even, return false. 3) Find an odd number d such that n-1 can be written as d*2r. Note that since n is odd, (n-1) must be even and r must be greater than 0. 4) Do following k times if (millerTest(n, d) == false) return false 5) Return true. // This function is called for all k trials. It returns // false if n is composite and returns true if n is probably // prime. // d is an odd number such that d*2r = n-1 for some r>=1 bool millerTest(int n, int d) 1) Pick a random number 'a' in range [2, n-2] 2) Compute: x = pow(a, d) % n 3) If x == 1 or x == n-1, return true. // Below loop mainly runs 'r-1' times. 4) Do following while d doesn't become n-1. a) x = (x*x) % n. b) If (x == 1) return false. c) If (x == n-1) return true.
Example:
Input: n = 13, k = 2. 1) Compute d and r such that d*2r = n-1, d = 3, r = 2. 2) Call millerTest k times. 1st Iteration: 1) Pick a random number 'a' in range [2, n-2] Suppose a = 4 2) Compute: x = pow(a, d) % n x = 43 % 13 = 12 3) Since x = (n-1), return true. IInd Iteration: 1) Pick a random number 'a' in range [2, n-2] Suppose a = 5 2) Compute: x = pow(a, d) % n x = 53 % 13 = 8 3) x neither 1 nor 12. 4) Do following (r-1) = 1 times a) x = (x * x) % 13 = (8 * 8) % 13 = 12 b) Since x = (n-1), return true. Since both iterations return true, we return true.
Implementation:
Below is the implementation of the above algorithm.
C++ // C++ program Miller-Rabin primality test #include <bits/stdc++.h> using namespace std; // Utility function to do modular exponentiation. // It returns (x^y) % p int power(int x, unsigned int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y & 1) res = (res*x) % p; // y must be even now y = y>>1; // y = y/2 x = (x*x) % p; } return res; } // This function is called for all k trials. It returns // false if n is composite and returns true if n is // probably prime. // d is an odd number such that d*2 = n-1 // for some r >= 1 bool miillerTest(int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + rand() % (n - 4); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n-1) return true; // Keep squaring x while one of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n-1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n-1) return true; } // Return composite return false; } // It returns false if n is composite and returns true if n // is probably prime. k is an input parameter that determines // accuracy level. Higher value of k indicates more accuracy. bool isPrime(int n, int k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = 2^d * r + 1 for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (int i = 0; i < k; i++) if (!miillerTest(d, n)) return false; return true; } // Driver program int main() { int k = 4; // Number of iterations cout << "All primes smaller than 100: \n"; for (int n = 1; n < 100; n++) if (isPrime(n, k)) cout << n << " "; return 0; }
Java // Java program Miller-Rabin primality test import java.io.*; import java.math.*; class GFG { // Utility function to do modular // exponentiation. It returns (x^y) % p static int power(int x, int y, int p) { int res = 1; // Initialize result //Update x if it is more than or // equal to p x = x % p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite and // returns false if n is probably prime. // d is an odd number such that d*2<sup>r</sup> // = n-1 for some r >= 1 static boolean miillerTest(int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + (int)(Math.random() % (n - 4)); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1) return true; // Keep squaring x while one of the // following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n - 1) return true; } // Return composite return false; } // It returns false if n is composite // and returns true if n is probably // prime. k is an input parameter that // determines accuracy level. Higher // value of k indicates more accuracy. static boolean isPrime(int n, int k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = 2^d * r + 1 // for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (int i = 0; i < k; i++) if (!miillerTest(d, n)) return false; return true; } // Driver program public static void main(String args[]) { int k = 4; // Number of iterations System.out.println("All primes smaller " + "than 100: "); for (int n = 1; n < 100; n++) if (isPrime(n, k)) System.out.print(n + " "); } } /* This code is contributed by Nikita Tiwari.*/
Python3 # Python3 program Miller-Rabin primality test import random # Utility function to do # modular exponentiation. # It returns (x^y) % p def power(x, y, p): # Initialize result res = 1; # Update x if it is more than or # equal to p x = x % p; while (y > 0): # If y is odd, multiply # x with result if (y & 1): res = (res * x) % p; # y must be even now y = y>>1; # y = y/2 x = (x * x) % p; return res; # This function is called # for all k trials. It returns # false if n is composite and # returns false if n is # probably prime. d is an odd # number such that d*2<sup>r</sup> = n-1 # for some r >= 1 def miillerTest(d, n): # Pick a random number in [2..n-2] # Corner cases make sure that n > 4 a = 2 + random.randint(1, n - 4); # Compute a^d % n x = power(a, d, n); if (x == 1 or x == n - 1): return True; # Keep squaring x while one # of the following doesn't # happen # (i) d does not reach n-1 # (ii) (x^2) % n is not 1 # (iii) (x^2) % n is not n-1 while (d != n - 1): x = (x * x) % n; d *= 2; if (x == 1): return False; if (x == n - 1): return True; # Return composite return False; # It returns false if n is # composite and returns true if n # is probably prime. k is an # input parameter that determines # accuracy level. Higher value of # k indicates more accuracy. def isPrime( n, k): # Corner cases if (n <= 1 or n == 4): return False; if (n <= 3): return True; # Find r such that n = # 2^d * r + 1 for some r >= 1 d = n - 1; while (d % 2 == 0): d //= 2; # Iterate given number of 'k' times for i in range(k): if (miillerTest(d, n) == False): return False; return True; # Driver Code # Number of iterations k = 4; print("All primes smaller than 100: "); for n in range(1,100): if (isPrime(n, k)): print(n , end=" "); # This code is contributed by mits
C# // C# program Miller-Rabin primality test using System; class GFG { // Utility function to do modular // exponentiation. It returns (x^y) % p static int power(int x, int y, int p) { int res = 1; // Initialize result // Update x if it is more than // or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite and // returns false if n is probably prime. // d is an odd number such that d*2<sup>r</sup> // = n-1 for some r >= 1 static bool miillerTest(int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 Random r = new Random(); int a = 2 + (int)(r.Next() % (n - 4)); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1) return true; // Keep squaring x while one of the // following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n - 1) return true; } // Return composite return false; } // It returns false if n is composite // and returns true if n is probably // prime. k is an input parameter that // determines accuracy level. Higher // value of k indicates more accuracy. static bool isPrime(int n, int k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = 2^d * r + 1 // for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (int i = 0; i < k; i++) if (miillerTest(d, n) == false) return false; return true; } // Driver Code static void Main() { int k = 4; // Number of iterations Console.WriteLine("All primes smaller " + "than 100: "); for (int n = 1; n < 100; n++) if (isPrime(n, k)) Console.Write(n + " "); } } // This code is contributed by mits
PHP <?php // PHP program Miller-Rabin primality test // Utility function to do // modular exponentiation. // It returns (x^y) % p function power($x, $y, $p) { // Initialize result $res = 1; // Update x if it is more than or // equal to p $x = $x % $p; while ($y > 0) { // If y is odd, multiply // x with result if ($y & 1) $res = ($res*$x) % $p; // y must be even now $y = $y>>1; // $y = $y/2 $x = ($x*$x) % $p; } return $res; } // This function is called // for all k trials. It returns // false if n is composite and // returns false if n is // probably prime. d is an odd // number such that d*2<sup>r</sup> = n-1 // for some r >= 1 function miillerTest($d, $n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 $a = 2 + rand() % ($n - 4); // Compute a^d % n $x = power($a, $d, $n); if ($x == 1 || $x == $n-1) return true; // Keep squaring x while one // of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while ($d != $n-1) { $x = ($x * $x) % $n; $d *= 2; if ($x == 1) return false; if ($x == $n-1) return true; } // Return composite return false; } // It returns false if n is // composite and returns true if n // is probably prime. k is an // input parameter that determines // accuracy level. Higher value of // k indicates more accuracy. function isPrime( $n, $k) { // Corner cases if ($n <= 1 || $n == 4) return false; if ($n <= 3) return true; // Find r such that n = // 2^d * r + 1 for some r >= 1 $d = $n - 1; while ($d % 2 == 0) $d /= 2; // Iterate given number of 'k' times for ($i = 0; $i < $k; $i++) if (!miillerTest($d, $n)) return false; return true; } // Driver Code // Number of iterations $k = 4; echo "All primes smaller than 100: \n"; for ($n = 1; $n < 100; $n++) if (isPrime($n, $k)) echo $n , " "; // This code is contributed by ajit ?>
JavaScript <script> // Javascript program Miller-Rabin primality test // Utility function to do // modular exponentiation. // It returns (x^y) % p function power(x, y, p) { // Initialize result let res = 1; // Update x if it is more than or // equal to p x = x % p; while (y > 0) { // If y is odd, multiply // x with result if (y & 1) res = (res*x) % p; // y must be even now y = y>>1; // y = y/2 x = (x*x) % p; } return res; } // This function is called // for all k trials. It returns // false if n is composite and // returns false if n is // probably prime. d is an odd // number such that d*2<sup>r</sup> = n-1 // for some r >= 1 function miillerTest(d, n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 let a = 2 + Math.floor(Math.random() * (n-2)) % (n - 4); // Compute a^d % n let x = power(a, d, n); if (x == 1 || x == n-1) return true; // Keep squaring x while one // of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n-1) { x = (x * x) % n; d *= 2; if (x == 1) return false; if (x == n-1) return true; } // Return composite return false; } // It returns false if n is // composite and returns true if n // is probably prime. k is an // input parameter that determines // accuracy level. Higher value of // k indicates more accuracy. function isPrime( n, k) { // Corner cases if (n <= 1 || n == 4) return false; if (n <= 3) return true; // Find r such that n = // 2^d * r + 1 for some r >= 1 let d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (let i = 0; i < k; i++) if (!miillerTest(d, n)) return false; return true; } // Driver Code // Number of iterations let k = 4; document.write("All primes smaller than 100: <br>"); for (let n = 1; n < 100; n++) if (isPrime(n, k)) document.write(n , " "); // This code is contributed by gfgking </script>
Output:
All primes smaller than 100: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Time Complexity: O(k*logn)
Auxiliary Space: O(1)
How does this work?
Below are some important facts behind the algorithm:
- Fermat's theorem states that, If n is a prime number, then for every a, 1 <= a < n, an-1 % n = 1
- Base cases make sure that n must be odd. Since n is odd, n-1 must be even. And an even number can be written as d * 2s where d is an odd number and s > 0.
- From the above two points, for every randomly picked number in the range [2, n-2], the value of ad*2r % n must be 1.
- As per Euclid's Lemma, if x2 % n = 1 or (x2 - 1) % n = 0 or (x-1)(x+1)% n = 0. Then, for n to be prime, either n divides (x-1) or n divides (x+1). Which means either x % n = 1 or x % n = -1.
- From points 2 and 3, we can conclude
For n to be prime, either ad % n = 1 OR ad*2i % n = -1 for some i, where 0 <= i <= r-1.
Next Article :
Primality Test | Set 4 (Solovay-Strassen)
This article is contributed Ruchir Garg.
Similar Reads
Check for Prime Number Given a number n, check whether it is a prime number or not.Note: A prime number is a number greater than 1 that has no positive divisors other than 1 and itself.Input: n = 7Output: trueExplanation: 7 is a prime number because it is greater than 1 and has no divisors other than 1 and itself.Input: n
11 min read
Primality Test Algorithms
Introduction to Primality Test and School MethodGiven a positive integer, check if the number is prime or not. A prime is a natural number greater than 1 that has no positive divisors other than 1 and itself. Examples of the first few prime numbers are {2, 3, 5, ...}Examples : Input: n = 11Output: trueInput: n = 15Output: falseInput: n = 1Output:
10 min read
Fermat Method of Primality TestGiven a number n, check if it is prime or not. We have introduced and discussed the School method for primality testing in Set 1.Introduction to Primality Test and School MethodIn this post, Fermat's method is discussed. This method is a probabilistic method and is based on Fermat's Little Theorem.
10 min read
Primality Test | Set 3 (MillerâRabin)Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.Primality Test | Set 1 (Introduction and School Method) Primality Test | Set 2 (Fermat Method)In this post, the Miller-Rabin method is discussed. This method is a probabili
15+ min read
Solovay-Strassen method of Primality TestWe have already been introduced to primality testing in the previous articles in this series. Introduction to Primality Test and School MethodFermat Method of Primality TestPrimality Test | Set 3 (MillerâRabin)The SolovayâStrassen test is a probabilistic algorithm used to check if a number is prime
13 min read
Lucas Primality TestA number p greater than one is prime if and only if the only divisors of p are 1 and p. First few prime numbers are 2, 3, 5, 7, 11, 13, ...The Lucas test is a primality test for a natural number n, it can test primality of any kind of number.It follows from Fermatâs Little Theorem: If p is prime and
12 min read
Sieve of Eratosthenes Given a number n, find all prime numbers less than or equal to n.Examples:Input: n = 10Output: [2, 3, 5, 7]Explanation: The prime numbers up to 10 obtained by Sieve of Eratosthenes are [2, 3, 5, 7].Input: n = 35Output: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]Explanation: The prime numbers up to 35 o
5 min read
How is the time complexity of Sieve of Eratosthenes is n*log(log(n))? Pre-requisite: Sieve of Eratosthenes What is Sieve of Eratosthenes algorithm? In order to analyze it, let's take a number n and the task is to print the prime numbers less than n. Therefore, by definition of Sieve of Eratosthenes, for every prime number, it has to check the multiples of the prime an
3 min read
Sieve of Eratosthenes in 0(n) time complexity The classical Sieve of Eratosthenes algorithm takes O(N log (log N)) time to find all prime numbers less than N. In this article, a modified Sieve is discussed that works in O(N) time.Example : Given a number N, print all prime numbers smaller than N Input : int N = 15 Output : 2 3 5 7 11 13 Input :
12 min read
Programs and Problems based on Sieve of Eratosthenes
C++ Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19".CPP// C++ program to print all primes smaller than or equal to // n usin
2 min read
Java Program for Sieve of EratosthenesGiven a number n, print all primes smaller than or equal to n. It is also given that n is a small number. For example, if n is 10, the output should be "2, 3, 5, 7". If n is 20, the output should be "2, 3, 5, 7, 11, 13, 17, 19". Java // Java program to print all primes smaller than or equal to // n
2 min read
Scala | Sieve of EratosthenesEratosthenes of Cyrene was a Greek mathematician, who discovered an amazing algorithm to find prime numbers. This article performs this algorithm in Scala. Step 1 : Creating an Int Stream Scala 1== def numberStream(n: Int): Stream[Int] = Stream.from(n) println(numberStream(10)) Output of above step
4 min read
Check if a number is Primorial Prime or notGiven a positive number N, the task is to check if N is a primorial prime number or not. Print 'YES' if N is a primorial prime number otherwise print 'NO.Primorial Prime: In Mathematics, A Primorial prime is a prime number of the form pn# + 1 or pn# - 1 , where pn# is the primorial of pn i.e the pro
10 min read
Sum of all Primes in a given range using Sieve of EratosthenesGiven a range [l, r], the task is to find the sum of all the prime numbers in the given range from l to r both inclusive.Examples: Input : l = 10, r = 20Output : 60Explanation: Prime numbers between [10, 20] are: 11, 13, 17, 19Therefore, sum = 11 + 13 + 17 + 19 = 60Input : l = 15, r = 25Output : 59E
1 min read
Prime Factorization using Sieve O(log n) for multiple queriesWe can calculate the prime factorization of a number "n" in O(sqrt(n)) as discussed here. But O(sqrt n) method times out when we need to answer multiple queries regarding prime factorization.In this article, we study an efficient method to calculate the prime factorization using O(n) space and O(log
11 min read
Java Program to Implement Sieve of Eratosthenes to Generate Prime Numbers Between Given RangeA number which is divisible by 1 and itself or a number which has factors as 1 and the number itself is called a prime number. The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so. Example: Input : from = 1, to = 20 Out
3 min read
Segmented Sieve Given a number n, print all primes smaller than n. Input: N = 10Output: 2, 3, 5, 7Explanation : The output â2, 3, 5, 7â for input N = 10 represents the list of the prime numbers less than or equal to 10. Input: N = 5Output: 2, 3, 5 Explanation : The output â2, 3, 5â for input N = 5 represents the li
15+ min read
Segmented Sieve (Print Primes in a Range) Given a range [low, high], print all primes in this range? For example, if the given range is [10, 20], then output is 11, 13, 17, 19. A Naive approach is to run a loop from low to high and check each number for primeness. A Better Approach is to precalculate primes up to the maximum limit using Sie
15 min read
Longest sub-array of Prime Numbers using Segmented Sieve Given an array arr[] of N integers, the task is to find the longest subarray where all numbers in that subarray are prime. Examples: Input: arr[] = {3, 5, 2, 66, 7, 11, 8} Output: 3 Explanation: Maximum contiguous prime number sequence is {2, 3, 5} Input: arr[] = {1, 2, 11, 32, 8, 9} Output: 2 Expla
13 min read
Sieve of Sundaram to print all primes smaller than n Given a number n, print all primes smaller than or equal to n.Examples: Input: n = 10Output: 2, 3, 5, 7Input: n = 20Output: 2, 3, 5, 7, 11, 13, 17, 19We have discussed Sieve of Eratosthenes algorithm for the above task. Below is Sieve of Sundaram algorithm.printPrimes(n)[Prints all prime numbers sma
10 min read