Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Perfect Binary Tree
Next article icon

Perfect Binary Tree

Last Updated : 11 Jan, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

What is a Perfect Binary Tree?

A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled with no gaps.

The maximum number of nodes in a perfect binary tree is given by the formula 2^(d+1) - 1, where d is the depth of the tree. This means that a perfect binary tree with a depth of n has 2^n leaf nodes and a total of 2^(n+1) - 1 nodes.

Perfect binary trees have a number of useful properties that make them useful in various applications. For example, they are often used in the implementation of heap data structures, as well as in the construction of threaded binary trees. They are also used in the implementation of algorithms such as heapsort and merge sort.

In other words, it can be said that each level of the tree is completely filled by the nodes.

Examples of Perfect Binary Tree: 

Example of a Perfect Binary Tree
Example of a Perfect Binary Tree

A tree with only the root node is also a perfect binary tree.     

Example-2

The following tree is not a perfect binary tree because the last level of the tree is not completely filled.

Not a Perfect Binary Tree
Not a Perfect Binary Tree

Properties of a Perfect Binary Tree:

  • Degree: The degree of a node of a tree is defined as the number of children of that node. All the internal nodes have a degree of 2. The leaf nodes of a perfect binary tree have a degree of 0.
  • Number of leaf nodes: If the height of the perfect binary tree is h, then the number of leaf nodes will be 2h because the last level is completely filled.
  • Depth of a node: Average depth of a node in a perfect binary tree is Θ(ln(n)).
  • Relation between leaf nodes and non-leaf nodes: No. of leaf nodes = No. of non-leaf nodes +1.
  • Total number of nodes: A tree of height h has total nodes = 2h+1 - 1. Each node of the tree is filled. So total number of nodes can be calculated as 20 + 21 + . . . + 2h = 2h+1 - 1.
  • Height of the tree: The height of a perfect binary tree with N number of nodes = log(N + 1) - 1 = Θ(ln(n)). This can be calculated using the relation shown while calculating the total number of nodes in a perfect binary tree.

Check whether a tree is a Perfect Binary Tree or not:

  • Check the depth of the tree. A perfect binary tree is defined as a tree where all leaf nodes are at the same depth, and all non-leaf nodes have two children. To check whether a tree is a perfect binary tree, you can first calculate the depth of the tree.
  • Check the number of nodes at each level: Once you have calculated the depth of the tree, you can then check the number of nodes at each level. In a perfect binary tree, the number of nodes at each level should be a power of 2 (e.g. 1, 2, 4, 8, etc.). If any level has a different number of nodes, the tree is not a perfect binary tree.

For more information about this refer to the article article: Check whether a given binary tree is perfect or not

Summary:

  • All leaf nodes are at the same depth. In a perfect binary tree, all leaf nodes are at the maximum depth of the tree. This means that the tree is completely filled with no gaps.
  • All non-leaf nodes have two children. In a perfect binary tree, all non-leaf nodes have exactly two children. This means that the tree has a regular structure, with all nodes having either two children or no children.
  • The maximum number of nodes is given by a formula: The maximum number of nodes in a perfect binary tree is given by the formula 2^(d+1) - 1, where d is the depth of the tree.
  • They have a symmetrical structure. This is because all non-leaf nodes have two children, perfect binary trees have a symmetrical structure.
  • They can be represented using an array. Perfect binary trees can be represented using an array, where the left child of a node at index i is stored at index 2i+1 and the right child is stored at index 2i+2. This makes it easy to access the children of a node and to traverse the tree.

Next Article
Perfect Binary Tree

Y

yashguptaaa333
Improve
Article Tags :
  • Tree
  • DSA
  • Binary Tree
Practice Tags :
  • Tree

Similar Reads

    Binary Tree Data Structure
    A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
    3 min read
    Introduction to Binary Tree
    Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Introduction to Binary TreeRepresentation of Bina
    15+ min read
    Properties of Binary Tree
    This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levelsBinary tree representationNote: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A bina
    4 min read
    Applications, Advantages and Disadvantages of Binary Tree
    A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
    2 min read
    Binary Tree (Array implementation)
    Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
    6 min read
    Maximum Depth of Binary Tree
    Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node.Examples:Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which has
    11 min read
    Insertion in a Binary Tree in level order
    Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner.Examples:Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner.Approach:The
    8 min read
    Deletion in a Binary Tree
    Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
    12 min read
    Enumeration of Binary Trees
    A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
    3 min read

    Types of Binary Tree

    Types of Binary Tree
    We have discussed Introduction to Binary Tree in set 1 and the Properties of Binary Tree in Set 2. In this post, common types of Binary Trees are discussed. Types of Binary Tree based on the number of children:Following are the types of Binary Tree based on the number of children: Full Binary TreeDe
    7 min read
    Complete Binary Tree
    We know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
    7 min read
    Perfect Binary Tree
    What is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences