Modular multiplicative inverse from 1 to n
Last Updated : 23 Nov, 2023
Give a positive integer n, find modular multiplicative inverse of all integer from 1 to n with respect to a big prime number, say, 'prime'.
The modular multiplicative inverse of a is an integer 'x' such that.
a x ? 1 (mod prime)
Examples:
Input : n = 10, prime = 17 Output : 1 9 6 13 7 3 5 15 2 12 Explanation : For 1, modular inverse is 1 as (1 * 1)%17 is 1 For 2, modular inverse is 9 as (2 * 9)%17 is 1 For 3, modular inverse is 6 as (3 * 6)%17 is 1 ....... Input : n = 5, prime = 7 Output : 1 4 5 2 3
A simple solution is to one by one find modular inverse for every number.
C++ // C++ program to find modular inverse of // all numbers from 1 to n using naive // method #include<iostream> using namespace std; // A naive method to find modular // multiplicative inverse of 'a' // under modulo 'prime' int modInverse(int a, int prime) { a = a % prime; for (int x=1; x<prime; x++) if ((a*x) % prime == 1) return x; return -1; } void printModIverses(int n, int prime) { for (int i=1; i<=n; i++) cout << modInverse(i, prime) << " "; } // Driver Program int main() { int n = 10, prime = 17; printModIverses(n, prime); return 0; }
Java // Java program to find modular inverse of // all numbers from 1 to n using naive // method import java.io.*; class GFG { // A naive method to find modular // multiplicative inverse of 'a' // under modulo 'prime' static int modInverse(int a, int prime) { a = a % prime; for (int x = 1; x <prime; x++) if ((a * x) % prime == 1) return x; return -1; } static void printModIverses(int n, int prime) { for (int i = 1; i <= n; i++) System.out.print(modInverse(i, prime) + " "); } // Driver Program public static void main(String args[]) { int n = 10, prime = 17; printModIverses(n, prime); } } // This code is contributed by Nikita Tiwari.
Python3 # Python 3 program to find # modular inverse of # all numbers from 1 # to n using naive # method # A naive method to find modular # multiplicative inverse of 'a' # under modulo 'prime' def modInverse(a, prime) : a = a % prime for x in range(1,prime) : if ((a*x) % prime == 1) : return x return -1 def printModIverses(n, prime) : for i in range(1,n+1) : print( modInverse(i, prime) ,end= " ") # Driver Program n = 10 prime = 17 printModIverses(n, prime) # This code is contributed # by Nikita Tiwari.
C# // C# program to find modular inverse of // all numbers from 1 to n using naive // method using System; class GFG { // A naive method to find modular // multiplicative inverse of 'a' // under modulo 'prime' static int modInverse(int a, int prime) { a = a % prime; for (int x = 1; x <prime; x++) if ((a * x) % prime == 1) return x; return -1; } static void printModIverses(int n, int prime) { for (int i = 1; i <= n; i++) Console.Write(modInverse(i, prime) + " "); } // Driver Program public static void Main() { int n = 10, prime = 17; printModIverses(n, prime); } } // This code is contributed by vt_m.
JavaScript <script> // Javascript program to find modular // inverse of all numbers from 1 to n // using naive method // A naive method to find modular // multiplicative inverse of 'a' // under modulo 'prime' function modInverse(a, prime) { a = a % prime; for(let x = 1; x < prime; x++) if ((a * x) % prime == 1) return x; return -1; } function printModIverses( n, prime) { for(let i = 1; i <= n; i++) document.write(modInverse(i, prime) + " "); } // Driver code let n = 10; let prime = 17; printModIverses(n, prime); // This code is contributed by _saurabh_jaiswal </script>
PHP <?php // PHP program to find modular inverse of // all numbers from 1 to n using naive // method // A naive method to find modular // multiplicative inverse of 'a' // under modulo 'prime' function modInverse(int $a, int $prime) { $a = $a % $prime; for ( $x = 1; $x < $prime; $x++) if (($a * $x) % $prime == 1) return $x; return -1; } function printModIverses( $n, $prime) { for ( $i = 1; $i <= $n; $i++) echo modInverse($i, $prime) , " "; } // Driver Program $n = 10; $prime = 17; printModIverses($n, $prime); // This code is contributed by anuj_67. ?>
Output:
1 9 6 13 7 3 5 15 2 12
Time Complexity: O(n*prime)
Auxiliary Space: O(1)
An efficient solution is based on extended Euclid algorithm.
Extended Euclidean algorithm finds integer coefficients x and y such that:
ax + by = gcd(a, b) Let us put b = prime, we get ax + prime * y = gcd(a, prime) We know gcd(a, prime) = 1 because one of the numbers is prime. So we know ax + prime * y = 1 ---- (i) Since prime * y is a multiple of prime, x is modular multiplicative inverse of a. ax ? 1 (mod prime)
We can recursively find x using below expression (see extended Euclid algorithm for details).
if we take for gcd(prime%a,prime) it'll be 1 so (prime%a)*x1+prime*y1 = gcd(prime%a, prime) => (prime%a)*x1+prime*y1 = 1 -----(ii) =>(prime - (prime/a)*a)x1 + prime*y1 = 1 =>-(prime/a)*x1*a+(x1+y1)*prime using eq(i) and eq(ii) comparing the co-eeficient of a & prime we get x = -(prime/a)*x1, & y = (x1+y1) x = inv(a) & x1 = inv(prime%a)
We use above relation to compute inverse using previously computed values.
=> inverse(a) = -(prime/a)* inverse(prime % a) % prime => inverse(a) = (prime - (prime/a)) * inverse(prime % a) % prime
(-x % m = (m-x) % m)
We use Dynamic Programming approach that uses above recursive structure.
Dynamic Approach :
dp[1] = 1,
dp[2] = dp[17%2]*(17-17/2)%17 = 9
dp[3] = dp[17%3]*(17-17/3)%17 = 6
and so on..
C++ // CPP code to find modular inverse // from 1 to n w.r.t a big prime number #include <iostream> using namespace std; // Function to calculate modular // inverse using D.P void modularInverse(int n, int prime) { int dp[n + 1]; dp[0] = dp[1] = 1; for (int i = 2; i <= n; i++) dp[i] = dp[prime % i] * (prime - prime / i) % prime; for (int i = 1; i <= n; i++) cout << dp[i] << ' '; } // Driver code int main() { int n = 10, prime = 17; modularInverse(n, prime); return 0; }
Java // Java code to find modular inverse // from 1 to n w.r.t a big prime number import java.io.*; class GFG { // Function to calculate modular // inverse using D.P static void modularInverse(int n, int prime) { int dp[]=new int[n + 1]; dp[0] = dp[1] = 1; for (int i = 2; i <= n; i++) dp[i] = dp[prime % i] * (prime - prime / i) % prime; for (int i = 1; i <= n; i++) System.out.print(dp[i] + " "); } // Driver Program public static void main(String args[]) { int n = 10, prime = 17; modularInverse(n, prime); } } // This code is contributed by Nikita Tiwari.
Python3 # Python 3 code to find # modular inverse # from 1 to n w.r.t a # big prime number # Function to calculate modular # inverse using D.P def modularInverse( n, prime) : dp =[0]*(n+1) dp[0] = dp[1] = 1 for i in range( 2, n+1) : dp[i] = dp[prime % i] *(prime - prime // i) % prime for i in range( 1, n+1) : print(dp[i] ,end=" ") # Driver code n = 10 prime = 17 modularInverse(n, prime) # This code is contributed # by Nikita Tiwari.
C# // C# code to find modular inverse // from 1 to n w.r.t a big prime number using System; class GFG { // Function to calculate modular // inverse using D.P static void modularInverse(int n, int prime) { int []dp=new int[n + 1]; dp[0] = dp[1] = 1; for (int i = 2; i <= n; i++) dp[i] = dp[prime % i] * (prime - prime / i) % prime; for (int i = 1; i <= n; i++) Console.Write(dp[i] + " "); } // Driver Program public static void Main() { int n = 10, prime = 17; modularInverse(n, prime); } } // This code is contributed by vt_m.
JavaScript <script> // Javascript code to find modular // inverse from 1 to n w.r.t // a big prime number // Function to calculate // modular inverse using D.P function modularInverse(n, prime) { let dp = []; dp[0] = dp[1] = 1; for(let i = 2; i <= n; i++) dp[i] = dp[prime % i] * (prime - parseInt(prime / i)) % prime; for(let i = 1; i <= n; i++) document.write(dp[i] + ' '); } // Driver code let n = 10; let prime = 17; modularInverse(n, prime); // This code is contributed by _saurabh_jaiswal </script>
PHP <?php // PHP code to find modular // inverse from 1 to n w.r.t // a big prime number // Function to calculate // modular inverse using D.P function modularInverse($n, $prime) { $dp = array(); $dp[0] = $dp[1] = 1; for ($i = 2; $i <= $n; $i++) $dp[$i] = $dp[$prime % $i] * ($prime - intval($prime / $i)) % $prime; for ($i = 1; $i <= $n; $i++) echo ($dp[$i].' '); } // Driver code $n = 10; $prime = 17; modularInverse($n, $prime); // This code is contributed by // Manish Shaw(manishshaw1) ?>
Output:
1 9 6 13 7 3 5 15 2 12
Time Complexity: O(n)
Auxiliary Space: O(n)
Similar Reads
Modular Arithmetic Modular arithmetic is a system of arithmetic for numbers where numbers "wrap around" after reaching a certain value, called the modulus. It mainly uses remainders to get the value after wrap around. It is often referred to as "clock arithmetic. As you can see, the time values wrap after reaching 12
10 min read
Modular Exponentiation (Power in Modular Arithmetic) Given three integers x, n, and M, compute (x^n) % M (remainder when x raised to the power n is divided by M).Examples : Input: x = 3, n = 2, M = 4Output: 1Explanation: 32 % 4 = 9 % 4 = 1.Input: x = 2, n = 6, M = 10Output: 4Explanation: 26 % 10 = 64 % 10 = 4.Table of Content[Naive Approach] Repeated
6 min read
Modular multiplicative inverse Given two integers A and M, find the modular multiplicative inverse of A under modulo M.The modular multiplicative inverse is an integer X such that:A X â¡ 1 (mod M) Note: The value of X should be in the range {1, 2, ... M-1}, i.e., in the range of integer modulo M. ( Note that X cannot be 0 as A*0 m
15+ min read
Multiplicative order In number theory, given an integer A and a positive integer N with gcd( A , N) = 1, the multiplicative order of a modulo N is the smallest positive integer k with A^k( mod N ) = 1. ( 0 < K < N ) Examples : Input : A = 4 , N = 7 Output : 3 explanation : GCD(4, 7) = 1 A^k( mod N ) = 1 ( smallest
7 min read
Modular Multiplication Given three integers a, b, and M, where M is the modulus. Compute the result of the modular multiplication of a and b under modulo M.((aÃb) mod M)Examples:Input: a = 5, b = 3, M = 11Output: 4Explanation: a à b = 5 à 3 = 15, 15 % 11 = 4, so the result is 4.Input: a = 12, b = 15, M = 7Output: 5Explana
6 min read
Modular Division Given three positive integers a, b, and M, the objective is to find (a/b) % M i.e., find the value of (a à b-1 ) % M, where b-1 is the modular inverse of b modulo M.Examples: Input: a = 10, b = 2, M = 13Output: 5Explanation: The modular inverse of 2 modulo 13 is 7, so (10 / 2) % 13 = (10 à 7) % 13 =
13 min read
Modulus on Negative Numbers The modulus operator, denoted as %, returns the remainder when one number (the dividend) is divided by another number (the divisor).Modulus of Positive NumbersProblem: What is 7 mod 5?Solution: From Quotient Remainder Theorem, Dividend=Divisor*Quotient + Remainder7 = 5*1 + 2, which gives 2 as the re
7 min read
Problems on Modular Arithmetic
Euler's criterion (Check if square root under modulo p exists)Given a number 'n' and a prime p, find if square root of n under modulo p exists or not. A number x is square root of n under modulo p if (x*x)%p = n%p. Examples : Input: n = 2, p = 5 Output: false There doesn't exist a number x such that (x*x)%5 is 2 Input: n = 2, p = 7 Output: true There exists a
11 min read
Find sum of modulo K of first N natural numberGiven two integer N ans K, the task is to find sum of modulo K of first N natural numbers i.e 1%K + 2%K + ..... + N%K. Examples : Input : N = 10 and K = 2. Output : 5 Sum = 1%2 + 2%2 + 3%2 + 4%2 + 5%2 + 6%2 + 7%2 + 8%2 + 9%2 + 10%2 = 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 = 5.Recommended PracticeReve
9 min read
How to compute mod of a big number?Given a big number 'num' represented as string and an integer x, find value of "num % a" or "num mod a". Output is expected as an integer. Examples : Input: num = "12316767678678", a = 10 Output: num (mod a) ? 8 The idea is to process all digits one by one and use the property that xy (mod a) ? ((x
4 min read
Exponential Squaring (Fast Modulo Multiplication)Given two numbers base and exp, we need to compute baseexp under Modulo 10^9+7 Examples: Input : base = 2, exp = 2Output : 4Input : base = 5, exp = 100000Output : 754573817In competitions, for calculating large powers of a number we are given a modulus value(a large prime number) because as the valu
12 min read
Trick for modular division ( (x1 * x2 .... xn) / b ) mod (m)Given integers x1, x2, x3......xn, b, and m, we are supposed to find the result of ((x1*x2....xn)/b)mod(m). Example 1: Suppose that we are required to find (55C5)%(1000000007) i.e ((55*54*53*52*51)/120)%1000000007 Naive Method : Simply calculate the product (55*54*53*52*51)= say x,Divide x by 120 a
9 min read
Modular MultiplicationGiven three integers a, b, and M, where M is the modulus. Compute the result of the modular multiplication of a and b under modulo M.((aÃb) mod M)Examples:Input: a = 5, b = 3, M = 11Output: 4Explanation: a à b = 5 à 3 = 15, 15 % 11 = 4, so the result is 4.Input: a = 12, b = 15, M = 7Output: 5Explana
6 min read
Difference between Modulo and ModulusIn the world of Programming and Mathematics we often encounter the two terms "Modulo" and "Modulus". In programming we use the operator "%" to perform modulo of two numbers. It basically finds the remainder when a number x is divided by another number N. It is denoted by : x mod N where x : Dividend
2 min read
Modulo Operations in Programming With Negative ResultsIn programming, the modulo operation gives the remainder or signed remainder of a division, after one integer is divided by another integer. It is one of the most used operators in programming. This article discusses when and why the modulo operation yields a negative result. Examples: In C, 3 % 2 r
15+ min read
Modulo 10^9+7 (1000000007)In most programming competitions, we are required to answer the result in 10^9+7 modulo. The reason behind this is, if problem constraints are large integers, only efficient algorithms can solve them in an allowed limited time.What is modulo operation: The remainder obtained after the division opera
10 min read
Fibonacci modulo pThe Fibonacci sequence is defined as F_i = F_{i-1} + F_{i-2} where F_1 = 1 and F_2 = 1 are the seeds. For a given prime number p, consider a new sequence which is (Fibonacci sequence) mod p. For example for p = 5, the new sequence would be 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4 ⦠The minimal zero of the
5 min read
Modulo of a large Binary StringGiven a large binary string str and an integer K, the task is to find the value of str % K.Examples: Input: str = "1101", K = 45 Output: 13 decimal(1101) % 45 = 13 % 45 = 13 Input: str = "11010101", K = 112 Output: 101 decimal(11010101) % 112 = 213 % 112 = 101 Approach: It is known that (str % K) wh
5 min read
Modular multiplicative inverse from 1 to nGive a positive integer n, find modular multiplicative inverse of all integer from 1 to n with respect to a big prime number, say, 'prime'. The modular multiplicative inverse of a is an integer 'x' such that. a x ? 1 (mod prime) Examples: Input : n = 10, prime = 17 Output : 1 9 6 13 7 3 5 15 2 12 Ex
9 min read
Modular exponentiation (Recursive)Given three numbers a, b and c, we need to find (ab) % cNow why do â% câ after exponentiation, because ab will be really large even for relatively small values of a, b and that is a problem because the data type of the language that we try to code the problem, will most probably not let us store suc
6 min read
Chinese Remainder Theorem
Introduction to Chinese Remainder TheoremWe are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that: x % num[0] = rem[0], x % num[1] = rem[1], .......................x % num[k-1] = rem[k-1] Basically, we are given k numbers which
7 min read
Implementation of Chinese Remainder theorem (Inverse Modulo based implementation)We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that: x % num[0] = rem[0], x % num[1] = rem[1], ....................... x % num[k-1] = rem[k-1] Example: Input: num[] = {3, 4, 5}, rem[
11 min read
Cyclic Redundancy Check and Modulo-2 DivisionCyclic Redundancy Check or CRC is a method of detecting accidental changes/errors in the communication channel. CRC uses Generator Polynomial which is available on both sender and receiver side. An example generator polynomial is of the form like x3 + x + 1. This generator polynomial represents key
15+ min read
Using Chinese Remainder Theorem to Combine Modular equationsGiven N modular equations: A ? x1mod(m1) . . A ? xnmod(mn) Find x in the equation A ? xmod(m1*m2*m3..*mn) where mi is prime, or a power of a prime, and i takes values from 1 to n. The input is given as two arrays, the first being an array containing values of each xi, and the second array containing
12 min read