Merge Sort with O(1) extra space merge and O(n log n) time [Unsigned Integers Only]
Last Updated : 16 May, 2023
We have discussed Merge sort. How to modify the algorithm so that merge works in O(1) extra space and algorithm still works in O(n Log n) time. We may assume that the input values are integers only.
Examples:
Input : 5 4 3 2 1 Output : 1 2 3 4 5 Input : 999 612 589 856 56 945 243 Output : 56 243 589 612 856 945 999
For integer types, merge sort can be made inplace using some mathematics trick of modulus and division. That means storing two elements value at one index and can be extracted using modulus and division.
First we have to find a value greater than all the elements of the array. Now we can store the original value as modulus and the second value as division. Suppose we want to store arr[i] and arr[j] both at index i(means in arr[i]). First we have to find a 'maxval' greater than both arr[i] and arr[j]. Now we can store as arr[i] = arr[i] + arr[j]*maxval. Now arr[i]%maxval will give the original value of arr[i] and arr[i]/maxval will give the value of arr[j]. So below is the implementation on merge sort.
Approach: (Euclidean Division)
dividend = divisor * quotient +remainder
ex: 5/3 = q:1, r:2 applying euclidean: 3*1+2 =>5 (dividend)
divisor = maxele (absolute max element in the array)+1 (so that we always get non zero remainder)
quotient = min(first, second)
remainder = original element
Note: (when getting current element, assume the current container already has encoded element hence using % divisor)
first = arr[i] % divisor
second = arr[j] % divisor
encoded element = remainder + quotient*divisor
Possible issues in Merging:
1. If current number is Integer.MAX then new encoded value which is usually greater than current element will cause integer overflow and data corruption (In python there is no limit to number size so this issue will not occur).
2. Doesn't handle negative numbers (ie, when encoding a -ve number(current) with another -ve number(chosen smallest) the sign can't be preserved since both numbers have -ve sign. Also absolute values must be used when computing dividend = divisor*quotient+remainder (divisor = maxele, quotient = smallest, remainder = original) and sign must be restored, still it might not work due to sign preservation issue.
3. Only applicable to Unsigned integers, like indexes which are usually non-negative.
4. AUX = O(n) in worst case, assuming in a language like python where there is no limit to word/integer size, when input array elements are almost at Integer.MAX, then encoded value will require possibly 2x bits space to represent new number, the 2x bit space on whole can become +1x array size, which is almost like creating an AUX array but in an indirect way.
5. mod and division operations are the costliest, hence reduces overall performance(upto some extent).
C++ // C++ program to sort an array using merge sort such // that merge operation takes O(1) extra space. #include <bits/stdc++.h> using namespace std; void merge(int arr[], int beg, int mid, int end, int maxele) { int i = beg; int j = mid + 1; int k = beg; while (i <= mid && j <= end) { if (arr[i] % maxele <= arr[j] % maxele) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } else { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } } while (i <= mid) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } while (j <= end) { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } // Obtaining actual values for (int i = beg; i <= end; i++) arr[i] = arr[i] / maxele; } // Recursive merge sort with extra parameter, naxele void mergeSortRec(int arr[], int beg, int end, int maxele) { if (beg < end) { int mid = (beg + end) / 2; mergeSortRec(arr, beg, mid, maxele); mergeSortRec(arr, mid + 1, end, maxele); merge(arr, beg, mid, end, maxele); } } // This functions finds max element and calls recursive // merge sort. void mergeSort(int arr[], int n) { int maxele = *max_element(arr, arr+n) + 1; mergeSortRec(arr, 0, n-1, maxele); } int main() { int arr[] = { 999, 612, 589, 856, 56, 945, 243 }; int n = sizeof(arr) / sizeof(arr[0]); mergeSort(arr, n); cout << "Sorted array \n"; for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
Java // Java program to sort an array // using merge sort such that // merge operation takes O(1) // extra space. import java.util.Arrays; class GFG { static void merge(int[] arr, int beg, int mid, int end, int maxele) { int i = beg; int j = mid + 1; int k = beg; while (i <= mid && j <= end) { if (arr[i] % maxele <= arr[j] % maxele) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } else { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } } while (i <= mid) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } while (j <= end) { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } // Obtaining actual values for (i = beg; i <= end; i++) { arr[i] = arr[i] / maxele; } } // Recursive merge sort // with extra parameter, naxele static void mergeSortRec(int[] arr, int beg, int end, int maxele) { if (beg < end) { int mid = (beg + end) / 2; mergeSortRec(arr, beg, mid, maxele); mergeSortRec(arr, mid + 1, end, maxele); merge(arr, beg, mid, end, maxele); } } // This functions finds // max element and calls // recursive merge sort. static void mergeSort(int[] arr, int n) { int maxele = Arrays.stream(arr).max().getAsInt() + 1; mergeSortRec(arr, 0, n - 1, maxele); } // Driver code public static void main(String[] args) { int[] arr = {999, 612, 589, 856, 56, 945, 243}; int n = arr.length; mergeSort(arr, n); System.out.println("Sorted array "); for (int i = 0; i < n; i++) { System.out.print(arr[i] + " "); } } } // This code is contributed by 29AjayKumar
Python3 # Python3 program to sort an array using # merge sort such that merge operation # takes O(1) extra space. def merge(arr, beg, mid, end, maxele): i = beg j = mid + 1 k = beg while (i <= mid and j <= end): if (arr[i] % maxele <= arr[j] % maxele): arr[k] = arr[k] + (arr[i] % maxele) * maxele k += 1 i += 1 else: arr[k] = arr[k] + (arr[j] % maxele) * maxele k += 1 j += 1 while (i <= mid): arr[k] = arr[k] + (arr[i] % maxele) * maxele k += 1 i += 1 while (j <= end): arr[k] = arr[k] + (arr[j] % maxele) * maxele k += 1 j += 1 # Obtaining actual values for i in range(beg, end + 1): arr[i] = arr[i] // maxele # Recursive merge sort with extra # parameter, naxele def mergeSortRec(arr, beg, end, maxele): if (beg < end): mid = (beg + end) // 2 mergeSortRec(arr, beg, mid, maxele) mergeSortRec(arr, mid + 1, end, maxele) merge(arr, beg, mid, end, maxele) # This functions finds max element and # calls recursive merge sort. def mergeSort(arr, n): maxele = max(arr) + 1 mergeSortRec(arr, 0, n - 1, maxele) # Driver Code if __name__ == '__main__': arr = [ 999, 612, 589, 856, 56, 945, 243 ] n = len(arr) mergeSort(arr, n) print("Sorted array") for i in range(n): print(arr[i], end = " ") # This code is contributed by mohit kumar 29
C# // C# program to sort an array // using merge sort such that // merge operation takes O(1) // extra space. using System; using System.Linq; class GFG { static void merge(int []arr, int beg, int mid, int end, int maxele) { int i = beg; int j = mid + 1; int k = beg; while (i <= mid && j <= end) { if (arr[i] % maxele <= arr[j] % maxele) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } else { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } } while (i <= mid) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } while (j <= end) { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } // Obtaining actual values for ( i = beg; i <= end; i++) arr[i] = arr[i] / maxele; } // Recursive merge sort // with extra parameter, naxele static void mergeSortRec(int []arr, int beg, int end, int maxele) { if (beg < end) { int mid = (beg + end) / 2; mergeSortRec(arr, beg, mid, maxele); mergeSortRec(arr, mid + 1, end, maxele); merge(arr, beg, mid, end, maxele); } } // This functions finds // max element and calls // recursive merge sort. static void mergeSort(int []arr, int n) { int maxele = arr.Max() + 1; mergeSortRec(arr, 0, n - 1, maxele); } //Driver code public static void Main () { int []arr = {999, 612, 589, 856, 56, 945, 243}; int n = arr.Length; mergeSort(arr, n); Console.WriteLine("Sorted array "); for (int i = 0; i < n; i++) Console.Write( arr[i] + " "); } } // This code is contributed // by inder_verma.
JavaScript <script> // Javascript program to sort an array // using merge sort such that // merge operation takes O(1) // extra space. function merge(arr,beg,mid,end,maxele) { let i = beg; let j = mid + 1; let k = beg; while (i <= mid && j <= end) { if (arr[i] % maxele <= arr[j] % maxele) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } else { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } } while (i <= mid) { arr[k] = arr[k] + (arr[i] % maxele) * maxele; k++; i++; } while (j <= end) { arr[k] = arr[k] + (arr[j] % maxele) * maxele; k++; j++; } // Obtaining actual values for (i = beg; i <= end; i++) { arr[i] = Math.floor(arr[i] / maxele); } } // Recursive merge sort // with extra parameter, naxele function mergeSortRec(arr,beg,end,maxele) { if (beg < end) { let mid = Math.floor((beg + end) / 2); mergeSortRec(arr, beg, mid, maxele); mergeSortRec(arr, mid + 1, end, maxele); merge(arr, beg, mid, end, maxele); } } // This functions finds // max element and calls // recursive merge sort. function mergeSort(arr,n) { let maxele = Math.max(...arr) + 1; mergeSortRec(arr, 0, n - 1, maxele); } // Driver code let arr=[999, 612, 589, 856, 56, 945, 243]; let n = arr.length; mergeSort(arr, n); document.write("Sorted array <br>"); for (let i = 0; i < n; i++) { document.write(arr[i] + " "); } // This code is contributed by patel2127 </script>
Output: Sorted array 56 243 589 612 856 945 999
Time Complexity: O(n*log(n))
Space Complexity: O(1)
Similar Reads
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Merge sort in different languages
C Program for Merge SortMerge Sort is a comparison-based sorting algorithm that works by dividing the input array into two halves, then calling itself for these two halves, and finally it merges the two sorted halves. In this article, we will learn how to implement merge sort in C language.What is Merge Sort Algorithm?Merg
3 min read
C++ Program For Merge SortMerge Sort is a comparison-based sorting algorithm that uses divide and conquer paradigm to sort the given dataset. It divides the dataset into two halves, calls itself for these two halves, and then it merges the two sorted halves.In this article, we will learn how to implement merge sort in a C++
4 min read
Java Program for Merge SortMerge Sort is a divide-and-conquer algorithm. It divides the input array into two halves, calls itself the two halves, and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is a key process that assumes that arr[l..m] and arr[m+1..r] are
3 min read
Merge Sort in PythonMerge Sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the two halves and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is key process that assumes that arr[l..m] and arr[m+1..r] are sorte
4 min read
Merge Sort using Multi-threadingMerge Sort is a popular sorting technique which divides an array or list into two halves and then start merging them when sufficient depth is reached. Time complexity of merge sort is O(nlogn).Threads are lightweight processes and threads shares with other threads their code section, data section an
14 min read
Variations of Merge Sort
3-way Merge SortMerge Sort is a divide-and-conquer algorithm that recursively splits an array into two halves, sorts each half, and then merges them. A variation of this is 3-way Merge Sort, where instead of splitting the array into two parts, we divide it into three equal parts. In traditional Merge Sort, the arra
13 min read
Iterative Merge SortGiven an array of size n, the task is to sort the given array using iterative merge sort.Examples:Input: arr[] = [4, 1, 3, 9, 7]Output: [1, 3, 4, 7, 9]Explanation: The output array is sorted.Input: arr[] = [1, 3 , 2]Output: [1, 2, 3]Explanation: The output array is sorted.You can refer to Merge Sort
9 min read
In-Place Merge SortImplement Merge Sort i.e. standard implementation keeping the sorting algorithm as in-place. In-place means it does not occupy extra memory for merge operation as in the standard case. Examples: Input: arr[] = {2, 3, 4, 1} Output: 1 2 3 4 Input: arr[] = {56, 2, 45} Output: 2 45 56 Approach 1: Mainta
15+ min read
In-Place Merge Sort | Set 2Given an array A[] of size N, the task is to sort the array in increasing order using In-Place Merge Sort. Examples: Input: A = {5, 6, 3, 2, 1, 6, 7}Output: {1, 2, 3, 5, 6, 6, 7} Input: A = {2, 3, 4, 1}Output: {1, 2, 3, 4} Approach: The idea is to use the inplace_merge() function to merge the sorted
7 min read
Merge Sort with O(1) extra space merge and O(n log n) time [Unsigned Integers Only]We have discussed Merge sort. How to modify the algorithm so that merge works in O(1) extra space and algorithm still works in O(n Log n) time. We may assume that the input values are integers only. Examples: Input : 5 4 3 2 1 Output : 1 2 3 4 5 Input : 999 612 589 856 56 945 243 Output : 56 243 589
10 min read
Merge Sort in Linked List
Find a permutation that causes worst case of Merge Sort Given a set of elements, find which permutation of these elements would result in worst case of Merge Sort.Asymptotically, merge sort always takes O(n Log n) time, but the cases that require more comparisons generally take more time in practice. We basically need to find a permutation of input eleme
12 min read
How to make Mergesort to perform O(n) comparisons in best case? As we know, Mergesort is a divide and conquer algorithm that splits the array to halves recursively until it reaches an array of the size of 1, and after that it merges sorted subarrays until the original array is fully sorted. Typical implementation of merge sort works in O(n Log n) time in all thr
3 min read
Concurrent Merge Sort in Shared Memory Given a number 'n' and a n numbers, sort the numbers using Concurrent Merge Sort. (Hint: Try to use shmget, shmat system calls).Part1: The algorithm (HOW?) Recursively make two child processes, one for the left half, one of the right half. If the number of elements in the array for a process is less
10 min read
Visualization of Merge Sort
Some problems on Merge Sort
Count Inversions of an ArrayGiven an integer array arr[] of size n, find the inversion count in the array. Two array elements arr[i] and arr[j] form an inversion if arr[i] > arr[j] and i < j.Note: Inversion Count for an array indicates that how far (or close) the array is from being sorted. If the array is already sorted
15+ min read
Count of smaller elements on right side of each element in an Array using Merge sortGiven an array arr[] of N integers, the task is to count the number of smaller elements on the right side for each of the element in the array Examples: Input: arr[] = {6, 3, 7, 2} Output: 2, 1, 1, 0 Explanation: Smaller elements after 6 = 2 [3, 2] Smaller elements after 3 = 1 [2] Smaller elements a
12 min read
Sort a nearly sorted (or K sorted) arrayGiven an array arr[] and a number k . The array is sorted in a way that every element is at max k distance away from it sorted position. It means if we completely sort the array, then the index of the element can go from i - k to i + k where i is index in the given array. Our task is to completely s
6 min read
Median of two Sorted Arrays of Different SizesGiven two sorted arrays, a[] and b[], the task is to find the median of these sorted arrays. Assume that the two sorted arrays are merged and then median is selected from the combined array.This is an extension of Median of two sorted arrays of equal size problem. Here we handle arrays of unequal si
15+ min read
Merge k Sorted ArraysGiven K sorted arrays, merge them and print the sorted output.Examples:Input: K = 3, arr = { {1, 3, 5, 7}, {2, 4, 6, 8}, {0, 9, 10, 11}}Output: 0 1 2 3 4 5 6 7 8 9 10 11 Input: k = 4, arr = { {1}, {2, 4}, {3, 7, 9, 11}, {13} }Output: 1 2 3 4 7 9 11 13Table of ContentNaive - Concatenate all and SortU
15+ min read
Merge K sorted arrays of different sizes | ( Divide and Conquer Approach )Given k sorted arrays of different length, merge them into a single array such that the merged array is also sorted.Examples: Input : {{3, 13}, {8, 10, 11} {9, 15}} Output : {3, 8, 9, 10, 11, 13, 15} Input : {{1, 5}, {2, 3, 4}} Output : {1, 2, 3, 4, 5} Let S be the total number of elements in all th
8 min read
Merge K sorted linked listsGiven k sorted linked lists of different sizes, the task is to merge them all maintaining their sorted order.Examples: Input: Output: Merged lists in a sorted order where every element is greater than the previous element.Input: Output: Merged lists in a sorted order where every element is greater t
15+ min read
Union and Intersection of two Linked List using Merge SortGiven two singly Linked Lists, create union and intersection lists that contain the union and intersection of the elements present in the given lists. Each of the two lists contains distinct node values.Note: The order of elements in output lists doesn't matter.Examples:Input: head1: 10 -> 15 -
15+ min read
Sorting by combining Insertion Sort and Merge Sort algorithmsInsertion sort: The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part.Advantages: Following are the advantages of insertion sort: If the size of the list to be sorted is small, insertion sort ru
2 min read
Find array with k number of merge sort callsGiven two numbers n and k, find an array containing values in [1, n] and requires exactly k calls of recursive merge sort function. Examples: Input : n = 3 k = 3 Output : a[] = {2, 1, 3} Explanation: Here, a[] = {2, 1, 3} First of all, mergesort(0, 3) will be called, which then sets mid = 1 and call
6 min read
Difference of two Linked Lists using Merge sortGiven two Linked List, the task is to create a Linked List to store the difference of Linked List 1 with Linked List 2, i.e. the elements present in List 1 but not in List 2.Examples: Input: List1: 10 -> 15 -> 4 ->20, List2: 8 -> 4 -> 2 -> 10 Output: 15 -> 20 Explanation: In the
14 min read