What is Endianness? Big-Endian & Little-Endian
Last Updated : 23 May, 2024
Computers operate using binary code, a language made up of 0s and 1s. This binary code forms the foundation of all computer operations, enabling everything from rendering videos to processing complex algorithms. A single bit is a 0 or a 1, and eight bits make up a byte. While some data, such as certain English characters, can be represented by a single byte, other data types require multiple bytes. The concept of endianness is crucial in understanding how these bytes are read and interpreted by computers.
What is Endianness?
Endianness refers to the order in which bytes are arranged in memory. Different languages read their text in different orders. for example, English reads from left to right, while Arabic reads from right to left. Endianness works similarly for computers. If one computer reads bytes from left to right and another reads them from right to left, issues arise when these computers need to communicate.
Endianness ensures that bytes in computer memory are read in a specific order. Each computer system is internally consistent with its own data, but the advent of the internet has led to more data sharing than ever before, and not all systems read data in the same order.
Endianness comes in two primary forms: Big-endian (BE) and Little-endian (LE).
- Big-endian (BE): Stores the most significant byte (the "big end") first. This means that the first byte (at the lowest memory address) is the largest, which makes the most sense to people who read left to right.
- Little-endian (LE): Stores the least significant byte (the "little end") first. This means that the first byte (at the lowest memory address) is the smallest, which makes the most sense to people who read right to left.
What is Big-endian?
In a big-endian system, the most significant byte (MSB) is stored at the lowest memory address. This means the "big end" (the most significant part of the data) comes first. For instance, a 32-bit integer 0x12345678
would be stored in memory as follows in a big-endian system:
Big-endian Representation Address: 00 01 02 03 Data: 12 34 56 78
Here, 0x12 is the most significant byte, placed at the lowest address (00), followed by 0x34, 0x56, and 0x78 at the highest address (03).
What is Little-endian?
A little-endian system stores the least significant byte (LSB) at the lowest memory address. The "little end" (the least significant part of the data) comes first. For the same 32-bit integer 0x12345678
, a little-endian system would store it as:
Little-endian Representation Address: 00 01 02 03 Data: 78 56 34 12
Here, 0x78
is the least significant byte, placed at the lowest address (00), followed by 0x56
, 0x34
, and 0x12
at the highest address (03).
Significance of Most Significant Byte (MSbyte) in Little and Big Endian:
Understanding the concept of the Most Significant Byte (MSbyte) helps clarify endianness further. Let's use a decimal number to illustrate.
Consider the decimal number 2,984. Changing the digit 4 to 5 increases the number by 1, while changing the digit 2 to 3 increases the number by 1,000. This concept applies to bytes and bits as well.
- Most Significant Byte (MSbyte): The byte that holds the highest position value.
- Least Significant Byte (LSbyte): The byte that holds the lowest position value.
In big-endian format, the MSbyte is stored first. In little-endian format, the MSbyte is stored last.
When Might Endianness Be an Issue?
Endianness must be considered in various computing scenarios, particularly when systems with different byte orders need to communicate or share data.
- Unicode Characters: Unicode, the character set used universally across devices, uses a special character byte sequence called the Byte Order Mark (BOM). The BOM informs the system that the incoming stream is Unicode, specifies which Unicode character encoding is used, and indicates the endian order of the incoming stream.
- Programming Languages: Some programming languages require specifying the byte order sequence. For instance, in Swift, used for iOS development, you can define whether data is stored in big-endian or little-endian format.
- Network Protocols: Different protocols have emerged historically, leading to the need for interaction. Big-endian is the dominant order in network protocols and is referred to as network order. Conversely, most PCs use little-endian format. Ensuring interoperability between these formats is critical in network communication.
- Processor Design: Processors can be designed to be either little-endian, big-endian, or bi-endian (capable of handling both). Consumer choice and the resulting market trends have influenced what is considered "normal" in computer systems today.
Why is Endianness an Issue?
Endianness becomes an issue primarily due to the interaction between different systems and protocols. Historical protocol development led to varying byte order conventions, necessitating data conversion for compatibility. In higher-level languages and abstracted environments, endianness is often managed behind the scenes, reducing the need for developer concern. However, understanding endianness remains crucial for low-level programming, network protocol design, and data interoperability.
Conclusion
Endianness is how bytes are ordered in computer data. Big-endian and little-endian are two ways to arrange bytes, each with advantages. Understanding endianness is very important for developers dealing with low-level data, networking, and system interoperability. While little-endian is common, both formats remain important as technology evolves. Strategies for managing data across endian conventions will continue developing to ensure compatibility and performance.
Similar Reads
Bitwise Algorithms Bitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Introduction to Bitwise Algorithms - Data Structures and Algorithms Tutorial Bit stands for binary digit. A bit is the basic unit of information and can only have one of two possible values that is 0 or 1. In our world, we usually with numbers using the decimal base. In other words. we use the digit 0 to 9 However, there are other number representations that can be quite use
15+ min read
Bitwise Operators in C In C, bitwise operators are used to perform operations directly on the binary representations of numbers. These operators work by manipulating individual bits (0s and 1s) in a number.The following 6 operators are bitwise operators (also known as bit operators as they work at the bit-level). They are
6 min read
Bitwise Operators in Java In Java, Operators are special symbols that perform specific operations on one or more than one operands. They build the foundation for any type of calculation or logic in programming.There are so many operators in Java, among all, bitwise operators are used to perform operations at the bit level. T
6 min read
Python Bitwise Operators Python bitwise operators are used to perform bitwise calculations on integers. The integers are first converted into binary and then operations are performed on each bit or corresponding pair of bits, hence the name bitwise operators. The result is then returned in decimal format.Note: Python bitwis
5 min read
JavaScript Bitwise Operators In JavaScript, a number is stored as a 64-bit floating-point number but bitwise operations are performed on a 32-bit binary number. To perform a bit-operation, JavaScript converts the number into a 32-bit binary number (signed) and performs the operation and converts back the result to a 64-bit numb
5 min read
All about Bit Manipulation Bit Manipulation is a technique used in a variety of problems to get the solution in an optimized way. This technique is very effective from a Competitive Programming point of view. It is all about Bitwise Operators which directly works upon binary numbers or bits of numbers that help the implementa
14 min read
What is Endianness? Big-Endian & Little-Endian Computers operate using binary code, a language made up of 0s and 1s. This binary code forms the foundation of all computer operations, enabling everything from rendering videos to processing complex algorithms. A single bit is a 0 or a 1, and eight bits make up a byte. While some data, such as cert
5 min read
Bits manipulation (Important tactics) Prerequisites: Bitwise operators in C, Bitwise Hacks for Competitive Programming, Bit Tricks for Competitive Programming Table of Contents Compute XOR from 1 to n (direct method)Count of numbers (x) smaller than or equal to n such that n+x = n^xHow to know if a number is a power of 2?Find XOR of all
15+ min read
Easy Problems on Bit Manipulations and Bitwise Algorithms
Binary representation of a given numberGiven an integer n, the task is to print the binary representation of the number. Note: The given number will be maximum of 32 bits, so append 0's to the left if the result string is smaller than 30 length.Examples: Input: n = 2Output: 00000000000000000000000000000010Input: n = 0Output: 000000000000
6 min read
Count set bits in an integerWrite an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bitsInput : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits[Naive Approach] - One by One CountingTh
15+ min read
Add two bit stringsGiven two binary strings s1 and s2 consisting of only 0s and 1s. Find the resultant string after adding the two Binary Strings.Note: The input strings may contain leading zeros but the output string should not have any leading zeros.Examples:Input: s1 = "1101", s2 = "111"Output: 10100Explanation: "1
1 min read
Turn off the rightmost set bitGiven an integer n, turn remove turn off the rightmost set bit in it. Input: 12Output: 8Explanation : Binary representation of 12 is 00...01100. If we turn of the rightmost set bit, we get 00...01000 which is binary representation of 8Input: 7 Output: 6 Explanation : Binary representation for 7 is 0
7 min read
Rotate bits of a numberGiven a 32-bit integer n and an integer d, rotate the binary representation of n by d positions in both left and right directions. After each rotation, convert the result back to its decimal representation and return both values in an array as [left rotation, right rotation].Note: A rotation (or cir
7 min read
Compute modulus division by a power-of-2-numberGiven two numbers n and d where d is a power of 2 number, the task is to perform n modulo d without the division and modulo operators.Input: 6 4Output: 2 Explanation: As 6%4 = 2Input: 12 8Output: 4Explanation: As 12%8 = 4Input: 10 2Output: 0Explanation: As 10%2 = 0Approach:The idea is to leverage bi
3 min read
Find the Number Occurring Odd Number of TimesGiven an array of positive integers. All numbers occur an even number of times except one number which occurs an odd number of times. Find the number in O(n) time & constant space. Examples : Input : arr = {1, 2, 3, 2, 3, 1, 3}Output : 3 Input : arr = {5, 7, 2, 7, 5, 2, 5}Output : 5 Recommended
12 min read
Program to find whether a given number is power of 2Given a positive integer n, the task is to find if it is a power of 2 or not.Examples: Input : n = 16Output : YesExplanation: 24 = 16Input : n = 42Output : NoExplanation: 42 is not a power of 2Input : n = 1Output : YesExplanation: 20 = 1Approach 1: Using Log - O(1) time and O(1) spaceThe idea is to
12 min read
Find position of the only set bitGiven a number n containing only 1 set bit in its binary representation, the task is to find the position of the only set bit. If there are 0 or more than 1 set bits, then return -1. Note: Position of set bit '1' should be counted starting with 1 from the LSB side in the binary representation of the
8 min read
Check for Integer OverflowGiven two integers a and b. The task is to design a function that adds two integers and detects overflow during the addition. If the sum does not cause an overflow, return their sum. Otherwise, return -1 to indicate an overflow.Note: You cannot use type casting to a larger data type to check for ove
7 min read
Find XOR of two number without using XOR operatorGiven two integers, the task is to find XOR of them without using the XOR operator.Examples : Input: x = 1, y = 2Output: 3Input: x = 3, y = 5Output: 6Approach - Checking each bit - O(log n) time and O(1) spaceA Simple Solution is to traverse all bits one by one. For every pair of bits, check if both
8 min read
Check if two numbers are equal without using arithmetic and comparison operatorsGiven two numbers, the task is to check if two numbers are equal without using Arithmetic and Comparison Operators or String functions. Method 1 : The idea is to use XOR operator. XOR of two numbers is 0 if the numbers are the same, otherwise non-zero. C++ // C++ program to check if two numbers // a
8 min read
Detect if two integers have opposite signsGiven two integers a and b, the task is to determine whether they have opposite signs. Return true if the signs of the two numbers are different and false otherwise.Examples:Input: a = -5, b = 10Output: trueExplanation: One number is negative and the other is positive, so their signs are different.I
9 min read
Swap Two Numbers Without Using Third VariableGiven two variables a and y, swap two variables without using a third variable. Examples: Input: a = 2, b = 3Output: a = 3, b = 2Input: a = 20, b = 0Output: a = 0, b = 20Input: a = 10, b = 10Output: a = 10, b = 10Table of ContentUsing Arithmetic OperatorsUsing Bitwise XORBuilt-in SwapUsing Arithmeti
6 min read
Russian Peasant (Multiply two numbers using bitwise operators)Given two integers a and b, the task is to multiply them without using the multiplication operator. Instead of that, use the Russian Peasant Algorithm.Examples:Input: a = 2, b = 5Output: 10Explanation: Product of 2 and 5 is 10.Input: a = 6, b = 9Output: 54Explanation: Product of 6 and 9 is 54.Input:
4 min read