Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Geometric Algorithms
  • Basic Geometry
  • Computational Geometry
  • Slope of Line
  • Point of Intersection of Two Lines
  • Closest Pair of Points
  • Convex Hull
  • Pythagorean Quadruple
  • Polygon Triangulation
Open In App
Next Article:
Deleting points from Convex Hull
Next article icon

Dynamic Convex hull | Adding Points to an Existing Convex Hull

Last Updated : 14 Sep, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a convex hull, we need to add a given number of points to the convex hull and print the convex hull after every point addition. The points should be in anti-clockwise order after addition of every point. 
Examples: 
 

Input :   Convex Hull : (0, 0), (3, -1), (4, 5), (-1, 4)  Point to add : (100, 100)    Output :  New convex hull : (-1, 4) (0, 0) (3, -1) (100, 100)


 


We first check whether the point is inside the given convex hull or not. If it is, then nothing has to be done we directly return the given convex hull. If the point is outside the convex hull, we find the lower and upper tangents, and then merge the point with the given convex hull to find the new convex hull, as shown in the figure.
 

point_to_hull2


The red outline shows the new convex hull after merging the point and the given convex hull.
To find the upper tangent, we first choose a point on the hull that is nearest to the given point. Then while the line joining the point on the convex hull and the given point crosses the convex hull, we move anti-clockwise till we get the tangent line.
 

point_to_hull


The figure shows the moving of the point on the convex hull for finding the upper tangent.
Note: It is assumed here that the input of the initial convex hull is in the anti-clockwise order, otherwise we have to first sort them in anti-clockwise order then apply the following code.
 


Code: 
 

CPP
// C++ program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order. #include<bits/stdc++.h> using namespace std;  // checks whether the point crosses the convex hull // or not int orientation(pair<int, int> a, pair<int, int> b,                 pair<int, int> c) {     int res = (b.second-a.second)*(c.first-b.first) -               (c.second-b.second)*(b.first-a.first);      if (res == 0)         return 0;     if (res > 0)         return 1;     return -1; }  // Returns the square of distance between two input points int sqDist(pair<int, int> p1, pair<int, int> p2) {     return (p1.first-p2.first)*(p1.first-p2.first) +            (p1.second-p2.second)*(p1.second-p2.second); }  // Checks whether the point is inside the convex hull or not bool inside(vector<pair<int, int>> a, pair<int, int> p) {     // Initialize the centroid of the convex hull     pair<int, int> mid = {0, 0};      int n = a.size();      // Multiplying with n to avoid floating point     // arithmetic.     p.first *= n;     p.second *= n;     for (int i=0; i<n; i++)     {         mid.first += a[i].first;         mid.second += a[i].second;         a[i].first *= n;         a[i].second *= n;     }      // if the mid and the given point lies always     // on the same side w.r.t every edge of the     // convex hull, then the point lies inside     // the convex hull     for (int i=0, j; i<n; i++)     {         j = (i+1)%n;         int x1 = a[i].first, x2 = a[j].first;         int y1 = a[i].second, y2 = a[j].second;         int a1 = y1-y2;         int b1 = x2-x1;         int c1 = x1*y2-y1*x2;         int for_mid = a1*mid.first+b1*mid.second+c1;         int for_p = a1*p.first+b1*p.second+c1;         if (for_mid*for_p < 0)             return false;     }      return true; }  // Adds a point p to given convex hull a[] void addPoint(vector<pair<int, int>> &a, pair<int, int> p) {     // If point is inside p     if (inside(a, p))         return;        // point having minimum distance from the point p     int ind = 0;     int n = a.size();     for (int i=1; i<n; i++)         if (sqDist(p, a[i]) < sqDist(p, a[ind]))             ind = i;      // Find the upper tangent     int up = ind;     while (orientation(p, a[up], a[(up+1)%n])>=0)         up = (up + 1) % n;      // Find the lower tangent     int low = ind;     while (orientation(p, a[low], a[(n+low-1)%n])<=0)         low = (n+low - 1) % n;      // Initialize result     vector<pair<int, int>>ret;      // making the final hull by traversing points     // from up to low of given convex hull.     int curr = up;     ret.push_back(a[curr]);     while (curr != low)     {         curr = (curr+1)%n;         ret.push_back(a[curr]);     }      // Modify the original vector     ret.push_back(p);     a.clear();     for (int i=0; i<ret.size(); i++)         a.push_back(ret[i]); }  // Driver code int main() {     // the set of points in the convex hull     vector<pair<int, int> > a;     a.push_back({0, 0});     a.push_back({3, -1});     a.push_back({4, 5});     a.push_back({-1, 4});     int n = a.size();      pair<int, int> p = {100, 100};     addPoint(a, p);      // Print the modified Convex Hull     for (auto e : a)         cout << "(" << e.first << ", "               << e.second << ") ";      return 0; } 
Java
// Java program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order.  import java.io.*; import java.util.*; class GFG  {    // checks whether the point crosses the convex hull   // or not   static int orientation(ArrayList<Integer> a,                          ArrayList<Integer> b,                          ArrayList<Integer> c)   {     int res = (b.get(1) - a.get(1)) * (c.get(0) - b.get(0)) -       (c.get(1) - b.get(1)) * (b.get(0)-a.get(0));     if (res == 0)       return 0;     if (res > 0)       return 1;     return -1;   }    // Returns the square of distance between two input points   static int sqDist(ArrayList<Integer>p1, ArrayList<Integer>p2)   {     return (p1.get(0) - p2.get(0)) * (p1.get(0) - p2.get(0)) +        (p1.get(1) - p2.get(1)) * (p1.get(1) - p2.get(1));   }    // Checks whether the point is inside the convex hull or not   static boolean inside(ArrayList<ArrayList<Integer>> A,ArrayList<Integer>p)   {      // Initialize the centroid of the convex hull     ArrayList<Integer> mid = new ArrayList<Integer>(Arrays.asList(0,0));      int n = A.size();       for (int i = 0; i < n; i++)     {       mid.set(0,mid.get(0) + A.get(i).get(0));       mid.set(1,mid.get(1) + A.get(i).get(1));      }      // if the mid and the given point lies always     // on the same side w.r.t every edge of the     // convex hull, then the point lies inside     // the convex hull     for (int i = 0, j; i < n; i++)     {       j = (i + 1) % n;       int x1 = A.get(i).get(0)*n, x2 = A.get(j).get(0)*n;       int y1 = A.get(i).get(1)*n, y2 = A.get(j).get(1)*n;       int a1 = y1 - y2;       int b1 = x2 - x1;       int c1 = x1 * y2 - y1 * x2;       int for_mid = a1 * mid.get(0) + b1 * mid.get(1) + c1;       int for_p = a1 * p.get(0) * n + b1 * p.get(1) * n + c1;       if (for_mid*for_p < 0)         return false;     }     return true;   }    // Adds a point p to given convex hull a[]   static void addPoint(ArrayList<ArrayList<Integer>> a,ArrayList<Integer> p)   {      // If point is inside p     if (inside(a, p))       return;      // point having minimum distance from the point p     int ind = 0;     int n = a.size();     for (int i = 1; i < n; i++)     {       if (sqDist(p, a.get(i)) < sqDist(p, a.get(ind)))       {         ind = i;       }     }      // Find the upper tangent     int up = ind;     while (orientation(p, a.get(up), a.get((up+1)%n))>=0)       up = (up + 1) % n;      // Find the lower tangent     int low = ind;     while (orientation(p, a.get(low), a.get((n+low-1)%n))<=0)       low = (n+low - 1) % n;      // Initialize result     ArrayList<ArrayList<Integer>> ret = new ArrayList<ArrayList<Integer>>();      // making the final hull by traversing points     // from up to low of given convex hull.     int curr = up;     ret.add(a.get(curr));      while (curr != low)     {       curr = (curr + 1) % n;       ret.add(a.get(curr));     }      // Modify the original vector      ret.add(p);     a.clear();     for (int i = 0; i < ret.size(); i++)     {       a.add(ret.get(i));     }   }    // Driver code   public static void main (String[] args)    {      // the set of points in the convex hull     ArrayList<ArrayList<Integer>> a = new ArrayList<ArrayList<Integer>>();      a.add(new ArrayList<Integer>(Arrays.asList(0, 0)));     a.add(new ArrayList<Integer>(Arrays.asList(3, -1)));     a.add(new ArrayList<Integer>(Arrays.asList(4, 5)));     a.add(new ArrayList<Integer>(Arrays.asList(-1, 4)));      int n = a.size();      ArrayList<Integer> p = new ArrayList<Integer>(Arrays.asList(100,100));      addPoint(a, p);     // Print the modified Convex Hull     for(ArrayList<Integer> e:a )     {       System.out.print("(" + e.get(0) + ", " + e.get(1) + ") ");     }   } }  // This code is contributed by rag2127 
Python3
# Python 3 program to add given a point p to a given # convex hull. The program assumes that the # point of given convex hull are in anti-clockwise # order. import copy  # checks whether the point crosses the convex hull # or not def orientation(a, b, c):      res = ((b[1] - a[1]) * (c[0] - b[0]) -               (c[1] - b[1]) * (b[0] - a[0]))      if (res == 0):         return 0;     if (res > 0):         return 1;     return -1;  # Returns the square of distance between two input points def sqDist(p1, p2):      return ((p1[0] - p2[0]) * (p1[0] - p2[0]) +            (p1[1] - p2[1]) * (p1[1] - p2[1]));  # Checks whether the point is inside the convex hull or not def inside( a, p ):      # Initialize the centroid of the convex hull     mid = [0, 0]      n = len(a)      # Multiplying with n to avoid floating point     # arithmetic.     p[0] *= n;     p[1] *= n;     for i in range(n):                mid[0] += a[i][0];         mid[1] += a[i][1];         a[i][0] *= n;         a[i][1] *= n;          # if the mid and the given point lies always     # on the same side w.r.t every edge of the     # convex hull, then the point lies inside     # the convex hull     for i in range( n ):              j = (i + 1) % n;         x1 = a[i][0]         x2 = a[j][0]         y1 = a[i][1]         y2 = a[j][1]         a1 = y1 - y2;         b1 = x2 - x1;         c1 = x1 * y2 - y1 * x2;         for_mid = a1 * mid[0] + b1 * mid[1] + c1;         for_p = a1 * p[0] + b1*p[1]+c1;         if (for_mid*for_p < 0):             return False;         return True;  # Adds a point p to given convex hull a[] def addPoint( a, p):      # If point is inside p     arr= copy.deepcopy(a)     prr =p.copy()          if (inside(arr, prr)):         return;        # point having minimum distance from the point p     ind = 0;     n = len(a)     for i in range(1, n):         if (sqDist(p, a[i]) < sqDist(p, a[ind])):             ind = i      # Find the upper tangent     up = ind;     while (orientation(p, a[up], a[(up + 1) % n]) >= 0):         up = (up + 1) % n;      # Find the lower tangent     low = ind;     while (orientation(p, a[low], a[(n + low - 1) % n]) <= 0):         low = (n + low - 1) % n      # Initialize result     ret = []      # making the final hull by traversing points     # from up to low of given convex hull.     curr = up;     ret.append(a[curr]);     while (curr != low):         curr = (curr + 1) % n;         ret.append(a[curr]);      # Modify the original vector     ret.append(p);     a.clear();     for i in range(len(ret)):         a.append(ret[i]);  # Driver code if __name__ == "__main__":        # the set of points in the convex hull     a = []     a.append([0, 0]);     a.append([3, -1]);     a.append([4, 5]);     a.append([-1, 4]);     n = len(a)      p = [100, 100]     addPoint(a, p);      # Print the modified Convex Hull     for e in a :         print("(" , e[0], ", ",               e[1] , ") ",end=" ")  # This code is contributed by chitranayal          
C#
// C# program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order.  using System; using System.Collections.Generic;  public class GFG{    // checks whether the point crosses the convex hull   // or not   static int orientation(List<int> a,List<int> b,List<int> c)   {     int res=(b[1]-a[1]) * (c[0]-b[0]) - (c[1]-b[1]) * (b[0]-a[0]);     if (res == 0)       return 0;     if (res > 0)       return 1;     return -1;   }   // Returns the square of distance between two input points   static int sqDist(List<int>p1, List<int>p2)   {     return (p1[0] - p2[0]) * (p1[0] - p2[0]) +        (p1[1] - p2[1]) * (p1[1] - p2[1]);   }    // Checks whether the point is inside the convex hull or not   static bool inside(List<List<int>> A,List<int>p)   {      // Initialize the centroid of the convex hull     List<int> mid = new List<int>(){0,0};      int n = A.Count;       for (int i = 0; i < n; i++)     {       mid[0]+=A[i][0];       mid[1]+=A[i][1];      }         // if the mid and the given point lies always     // on the same side w.r.t every edge of the     // convex hull, then the point lies inside     // the convex hull     for (int i = 0, j; i < n; i++)     {       j = (i + 1) % n;       int x1 = A[i][0]*n, x2 = A[j][0]*n;       int y1 = A[i][1]*n, y2 = A[j][1]*n;       int a1 = y1 - y2;       int b1 = x2 - x1;       int c1 = x1 * y2 - y1 * x2;       int for_mid = a1 * mid[0] + b1 * mid[1] + c1;       int for_p = a1 * p[0] * n + b1 * p[1] * n + c1;       if (for_mid*for_p < 0)         return false;     }     return true;   }    // Adds a point p to given convex hull a[]   static void addPoint(List<List<int>> a,List<int> p)   {      // If point is inside p     if (inside(a, p))       return;      // point having minimum distance from the point p     int ind = 0;     int n = a.Count;     for (int i = 1; i < n; i++)     {       if (sqDist(p, a[i]) < sqDist(p, a[ind]))       {         ind = i;       }     }      // Find the upper tangent     int up = ind;     while (orientation(p, a[up], a[(up+1)%n])>=0)       up = (up + 1) % n;      // Find the lower tangent     int low = ind;     while (orientation(p, a[low], a[(n+low-1)%n])<=0)       low = (n+low - 1) % n;      // Initialize result     List<List<int>> ret = new List<List<int>>();      // making the final hull by traversing points     // from up to low of given convex hull.     int curr = up;     ret.Add(a[curr]);      while (curr != low)     {       curr = (curr + 1) % n;       ret.Add(a[curr]);     }      // Modify the original vector      ret.Add(p);     a.Clear();     for (int i = 0; i < ret.Count; i++)     {       a.Add(ret[i]);     }   }    // Driver code     static public void Main (){     // the set of points in the convex hull     List<List<int>> a = new List<List<int>>();      a.Add(new List<int>(){0,0});     a.Add(new List<int>(){3,-1});     a.Add(new List<int>(){4,5});     a.Add(new List<int>(){-1,4});      int n=a.Count;     List<int> p = new List<int>(){100,100};     addPoint(a, p);     // Print the modified Convex Hull     foreach(List<int> e in a)     {       Console.Write("(" + e[0] + ", " + e[1] + ") ");     }    } }  // This code is contributed by avanitrachhadiya2155 
JavaScript
<script> // Javascript program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order.  // checks whether the point crosses the convex hull   // or not function orientation(a,b,c) {     let res = (b[1] - a[1]) * (c[0] - b[0]) -       (c[1] - b[1]) * (b[0]-a[0]);     if (res == 0)       return 0;     if (res > 0)       return 1;     return -1; }  // Returns the square of distance between two input points function sqDist(p1,p2) {     return (p1[0] - p2[0]) * (p1[0] - p2[0]) +       (p1[1] - p2[1]) * (p1[1] - p2[1]); }  // Checks whether the point is inside the convex hull or not function inside(A,p) {     // Initialize the centroid of the convex hull     let mid = [0,0];       let n = A.length;         for (let i = 0; i < n; i++)     {      mid[0]+=A[i][0];       mid[1]+=A[i][1];       }       // if the mid and the given point lies always     // on the same side w.r.t every edge of the     // convex hull, then the point lies inside     // the convex hull     for (let i = 0, j; i < n; i++)     {       j = (i + 1) % n;       let x1 = A[i][0]*n, x2 = A[j][0]*n;       let y1 = A[i][1]*n, y2 = A[j][1]*n;       let a1 = y1 - y2;       let b1 = x2 - x1;       let c1 = x1 * y2 - y1 * x2;       let for_mid = a1 * mid[0] + b1 * mid[1] + c1;       let for_p = a1 * p[0] * n + b1 * p[1] * n + c1;       if (for_mid*for_p < 0)         return false;     }     return true; }  // Adds a point p to given convex hull a[] function addPoint(a,p) {     // If point is inside p     if (inside(a, p))       return;       // point having minimum distance from the point p     let ind = 0;     let n = a.length;     for (let i = 1; i < n; i++)     {       if (sqDist(p, a[i]) < sqDist(p, a[ind]))       {         ind = i;       }     }       // Find the upper tangent     let up = ind;     while (orientation(p, a[up], a[(up+1)%n])>=0)       up = (up + 1) % n;       // Find the lower tangent     let low = ind;     while (orientation(p, a[low], a[(n+low-1)%n])<=0)       low = (n+low - 1) % n;       // Initialize result     let ret = [];       // making the final hull by traversing points     // from up to low of given convex hull.     let curr = up;     ret.push(a[curr]);       while (curr != low)     {       curr = (curr + 1) % n;       ret.push(a[curr]);     }       // Modify the original vector       ret.push(p);     a=[];     for (let i = 0; i < ret.length; i++)     {       a.push(ret[i]);     }     return a; }  // Driver code  // the set of points in the convex hull let a = [] a.push([0, 0]); a.push([3, -1]); a.push([4, 5]); a.push([-1, 4]);  let n=a.length; let p=[100,100]; a=addPoint(a, p); // Print the modified Convex Hull for(let e=0;e<a.length;e++ ) {     document.write("(" + a[e][0] + ", " + a[e][1] + ") "); }  // This code is contributed by ab2127 </script> 

Output: 
 

(-1, 4) (0, 0) (3, -1) (100, 100)


Time Complexity: 
The time complexity of the above algorithm is O(n*q), where q is the number of points to be added.

Auxiliary Space: O(n), since n extra space has been taken.


This article is contributed by Aarti_Rathi and Amritya Vagmi and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to [email protected].  


Next Article
Deleting points from Convex Hull

K

kartik
Improve
Article Tags :
  • DSA
  • Geometric
Practice Tags :
  • Geometric

Similar Reads

    Convex Hull Algorithm
    The Convex Hull Algorithm is used to find the convex hull of a set of points in computational geometry. The convex hull is the smallest convex set that encloses all the points, forming a convex polygon. This algorithm is important in various applications such as image processing, route planning, and
    8 min read
    Convex Hull using Divide and Conquer Algorithm
    In computational geometry, a convex hull is the smallest convex polygon that contains a given set of points. It is a fundamental concept with applications in various fields such as computer graphics, robotics, and image processing. Importance of Convex Hull:Convex hulls are important in computationa
    15 min read
    Convex Hull using Jarvis' Algorithm or Wrapping
    Given a set of points in the plane. the convex hull of the set is the smallest convex polygon that contains all the points of it.We strongly recommend to see the following post first. How to check if two given line segments intersect?The idea of Jarvis's Algorithm is simple, we start from the leftmo
    13 min read
    Convex Hull using Graham Scan
    A convex hull is the smallest convex polygon that contains a given set of points. It is a useful concept in computational geometry and has applications in various fields such as computer graphics, image processing, and collision detection.A convex polygon is a polygon in which all interior angles ar
    15+ min read
    Convex Hull | Monotone chain algorithm
    Given a set of points, the task is to find the convex hull of the given points. The convex hull is the smallest convex polygon that contains all the points. Please check this article first: Convex Hull | Set 1 (Jarvis’s Algorithm or Wrapping) Examples: Input: Points[] = {{0, 3}, {2, 2}, {1, 1}, {2,
    11 min read
    Quickhull Algorithm for Convex Hull
    Given a set of points, a Convex hull is the smallest convex polygon containing all the given points. Input : points[] = {{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}};Output : The points in convex hull are: (0, 0) (0, 3) (3, 1) (4, 4)Input : points[] = {{0, 3}, {1, 1}Output : Not P
    14 min read

    Problems on Convex Hull

    Dynamic Convex hull | Adding Points to an Existing Convex Hull
    Given a convex hull, we need to add a given number of points to the convex hull and print the convex hull after every point addition. The points should be in anti-clockwise order after addition of every point. Examples: Input : Convex Hull : (0, 0), (3, -1), (4, 5), (-1, 4) Point to add : (100, 100)
    15 min read
    Deleting points from Convex Hull
    Given a fixed set of points. We need to find convex hull of given set. We also need to find convex hull when a point is removed from the set. Example: Initial Set of Points: (-2, 8) (-1, 2) (0, 1) (1, 0) (-3, 0) (-1, -9) (2, -6) (3, 0) (5, 3) (2, 5) Initial convex hull:- (-2, 8) (-3, 0) (-1, -9) (2,
    15+ min read
    Perimeter of Convex hull for a given set of points
    Given n 2-D points points[], the task is to find the perimeter of the convex hull for the set of points. A convex hull for a set of points is the smallest convex polygon that contains all the points. Examples: Input: points[] = {{0, 3}, {2, 2}, {1, 1}, {2, 1}, {3, 0}, {0, 0}, {3, 3}} Output: 12 Inpu
    10 min read
    Check if the given point lies inside given N points of a Convex Polygon
    Given coordinates of the N points of a Convex Polygon. The task is to check if the given point (X, Y) lies inside the polygon. Examples:Input: N = 7, Points: {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)}, Query: X = 3, Y = 2 Below is the image of plotting of the given points: Output: YES
    15 min read
    Tangents between two Convex Polygons
    Given two convex polygons, we aim to identify the lower and upper tangents connecting them. As shown in the figure below, TRL and TLR represent the upper and lower tangents, respectively. Examples: Input: First Polygon : [[2, 2], [3, 3], [5, 2], [4, 0], [3, 1]] Second Polygon : [[-1, 0], [0, 1], [1,
    15 min read
    Check if given polygon is a convex polygon or not
    Given a 2D array point[][] with each row of the form {X, Y}, representing the co-ordinates of a polygon in either clockwise or counterclockwise sequence, the task is to check if the polygon is a convex polygon or not. If found to be true, then print "Yes" . Otherwise, print "No".In a convex polygon,
    9 min read
    Check whether two convex regular polygon have same center or not
    Given two positive integers N and M which denotes the sides of the convex regular polygon where N < M, the task is to check whether polygons have the same center or not if N-sided polygon was inscribed in an M-sided polygon.Center of Polygon: Point inside a polygon which is equidistant from each
    3 min read
    Minimum Enclosing Circle
    Prerequisites: Equation of circle when three points on the circle are given, Convex HullGiven an array arr[][] containing N points in a 2-D plane with integer coordinates. The task is to find the centre and the radius of the minimum enclosing circle(MEC). A minimum enclosing circle is a circle in wh
    15+ min read
    How to Highlight Groups with Convex Hull in ggplot2 in R?
    In this article, we are going to see how to highlight groups with the convex hull in ggplot2 using R Programming Language.  Convex hull polygon refers to the draw a line bounding box around the outermost points in each group. Creating scatterplot for demonstration Here we will use the iris dataset t
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences