Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Dice Throw
Next article icon

Dice Throw

Last Updated : 10 Dec, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given n dices each with m faces, numbered from 1 to m, the task is to find the number of ways to get sum x. x is the summation of values on each face when all the dice are thrown.

Examples:

Input: m = 6, n = 3, x = 12
Output: 25
Explanation: There are 25 total ways to get the Sum 12 using 3 dices with faces from 1 to 6.

Input: m = 2, n = 3, x = 6
Output: 1
Explanation: There is only 1 way to get the Sum 6 using 3 dices with faces from 1 to 2. All the dices will have to land on 2.

Table of Content

  • Using Recursion - O(m^n) Time and O(m) Space
  • Using Top-Down DP (Memoization) - O(n*x*m) Time and O(n*x) Space
  • Using Bottom-Up DP (Tabulation) - O(n*x*m) Time and O(n*x) Space
  • Using Space Optimized DP - O(n*x*m) Time and O(x) Space

Using Recursion - O(m^n) Time and O(m) Space

The idea is to explore all possible ways to achieve the target sum. For each die, the approach tries every possible face value (from 1 to m), and recursively checks the number of ways to achieve the remaining sum with the remaining dice. At each recursive step, the function reduces the number of dice by one and subtracts the current die's value from the target sum. Base cases handle scenarios where all dice have been used or the target sum cannot be achieved, returning 1 for a valid combination and 0 for invalid scenarios.

Mathematically the recurrence relation will look like the following:

  • noOfWays(m, n, x) = sum (noOfWays(m, n-1, x-j)) for j in range[1, m].

Base Cases:

  • noOfWays(m, n, x) = 1, if n = 0 and x = 0.
  • noOfWays(m, n, x) = 0, if n = 0 or x < 0.
C++
// C++ program to implement // dice throw problem using recursion #include <bits/stdc++.h> using namespace std;  int noOfWays(int m, int n, int x) {      // Base case: Valid combination     if (n == 0 && x == 0)         return 1;      // Base case: Invalid combination     if (n == 0 || x <= 0)         return 0;      int ans = 0;      // Check for all values of m.     for (int i = 1; i <= m; i++) {         ans += noOfWays(m, n - 1, x - i);     }      return ans; }  int main() {     int m = 6, n = 3, x = 8;     cout << noOfWays(m, n, x); } 
Java
// Java program to implement // dice throw problem using recursion import java.util.*;  class GfG {      static int noOfWays(int m, int n, int x) {                  // Base case: Valid combination         if (n == 0 && x == 0) return 1;                  // Base case: Invalid combination         if (n == 0 || x <= 0) return 0;                  int ans = 0;                  // Check for all values of m.         for (int i = 1; i <= m; i++) {             ans += noOfWays(m, n - 1, x - i);         }                  return ans;     }      public static void main(String[] args) {         int m = 6, n = 3, x = 8;         System.out.println(noOfWays(m, n, x));     } } 
Python
# Python program to implement # dice throw problem using recursion  def noOfWays(m, n, x):          # Base case: Valid combination     if n == 0 and x == 0:         return 1          # Base case: Invalid combination     if n == 0 or x <= 0:         return 0          ans = 0          # Check for all values of m.     for i in range(1, m + 1):         ans += noOfWays(m, n - 1, x - i)          return ans  if __name__ == "__main__":     m = 6     n = 3     x = 8     print(noOfWays(m, n, x)) 
C#
// C# program to implement // dice throw problem using recursion using System;  class GfG {      static int noOfWays(int m, int n, int x) {                  // Base case: Valid combination         if (n == 0 && x == 0) return 1;                  // Base case: Invalid combination         if (n == 0 || x <= 0) return 0;                  int ans = 0;                  // Check for all values of m.         for (int i = 1; i <= m; i++) {             ans += noOfWays(m, n - 1, x - i);         }                  return ans;     }      static void Main(string[] args) {         int m = 6, n = 3, x = 8;         Console.WriteLine(noOfWays(m, n, x));     } } 
JavaScript
// JavaScript program to implement // dice throw problem using recursion  function noOfWays(m, n, x) {          // Base case: Valid combination     if (n === 0 && x === 0) return 1;          // Base case: Invalid combination     if (n === 0 || x <= 0) return 0;          let ans = 0;          // Check for all values of m.     for (let i = 1; i <= m; i++) {         ans += noOfWays(m, n - 1, x - i);     }          return ans; }  let m = 6, n = 3, x = 8; console.log(noOfWays(m, n, x)); 

Output
21

Using Top-Down DP (Memoization) - O(n*x*m) Time and O(n*x) Space

If we notice carefully, we can observe that the above recursive solution holds the following two properties of Dynamic Programming:

1. Optimal Substructure: Number of ways to make sum at dice n, i.e., noOfWays(m, n, x), depends on the solutions of the subproblems noOfWays(m, n-1, x-j) for j in range [1, m]. By combining these optimal substructures, we can efficiently calculate the number of ways to make target sum at dice n.

2. Overlapping Subproblems: While applying a recursive approach in this problem, we notice that certain subproblems are computed multiple times.

  • There are only are two parameters: n and x that changes in the recursive solution. So we create a 2D matrix of size (n+1)*(x+1) for memoization.
  • We initialize this matrix as -1 to indicate nothing is computed initially.
  • Now we modify our recursive solution to first check if the value is -1, then only make recursive calls. This way, we avoid re-computations of the same subproblems.
C++
// C++ program to implement // dice throw problem using memoization #include <bits/stdc++.h> using namespace std;  int countRecur(int m, int n, int x, vector<vector<int>> &memo) {          // Base case: Valid combination     if (n==0 && x==0) return 1;          // Base case: Invalid combination     if (n==0 || x<=0) return 0;          // If value is memoized     if (memo[n][x] != -1) return memo[n][x];          int ans = 0;          // Check for all values of m.     for (int i=1; i<=m; i++) {         ans += countRecur(m, n-1, x-i, memo);     }          return memo[n][x] = ans; }  int noOfWays(int m, int n, int x) {          vector<vector<int>> memo(n+1, vector<int>(x+1, -1));     return countRecur(m, n, x, memo); }  int main() {     int m = 6, n = 3, x = 8;     cout << noOfWays(m, n, x); } 
Java
// Java program to implement // dice throw problem using memoization import java.util.Arrays;  class GfG {      static int countRecur(int m, int n, int x, int[][] memo) {                  // Base case: Valid combination         if (n == 0 && x == 0) return 1;                  // Base case: Invalid combination         if (n == 0 || x <= 0) return 0;                  // If value is memoized         if (memo[n][x] != -1) return memo[n][x];                  int ans = 0;                  // Check for all values of m.         for (int i = 1; i <= m; i++) {             ans += countRecur(m, n - 1, x - i, memo);         }                  return memo[n][x] = ans;     }      static int noOfWays(int m, int n, int x) {                  int[][] memo = new int[n + 1][x + 1];         for (int[] row : memo) Arrays.fill(row, -1);                  return countRecur(m, n, x, memo);     }      public static void main(String[] args) {         int m = 6, n = 3, x = 8;         System.out.println(noOfWays(m, n, x));     } } 
Python
# Python program to implement # dice throw problem using memoization  def countRecur(m, n, x, memo):          # Base case: Valid combination     if n == 0 and x == 0:         return 1          # Base case: Invalid combination     if n == 0 or x <= 0:         return 0          # If value is memoized     if memo[n][x] != -1:         return memo[n][x]          ans = 0          # Check for all values of m.     for i in range(1, m + 1):         ans += countRecur(m, n - 1, x - i, memo)          memo[n][x] = ans     return ans  def noOfWays(m, n, x):     memo = [[-1 for _ in range(x + 1)] for _ in range(n + 1)]     return countRecur(m, n, x, memo)  if __name__ == "__main__":     m = 6     n = 3     x = 8     print(noOfWays(m, n, x)) 
C#
// C# program to implement // dice throw problem using memoization using System;  class GfG {      static int countRecur(int m, int n, int x, int[,] memo) {                  // Base case: Valid combination         if (n == 0 && x == 0) return 1;                  // Base case: Invalid combination         if (n == 0 || x <= 0) return 0;                  // If value is memoized         if (memo[n, x] != -1) return memo[n, x];                  int ans = 0;                  // Check for all values of m.         for (int i = 1; i <= m; i++) {             ans += countRecur(m, n - 1, x - i, memo);         }                  return memo[n, x] = ans;     }      static int noOfWays(int m, int n, int x) {                  int[,] memo = new int[n + 1, x + 1];         for (int i = 0; i <= n; i++) {             for (int j = 0; j <= x; j++) {                 memo[i, j] = -1;             }         }                  return countRecur(m, n, x, memo);     }      static void Main(string[] args) {         int m = 6, n = 3, x = 8;         Console.WriteLine(noOfWays(m, n, x));     } } 
JavaScript
// JavaScript program to implement // dice throw problem using memoization  function countRecur(m, n, x, memo) {          // Base case: Valid combination     if (n === 0 && x === 0) return 1;          // Base case: Invalid combination     if (n === 0 || x <= 0) return 0;          // If value is memoized     if (memo[n][x] !== -1) return memo[n][x];          let ans = 0;          // Check for all values of m.     for (let i = 1; i <= m; i++) {         ans += countRecur(m, n - 1, x - i, memo);     }          memo[n][x] = ans;     return ans; }  function noOfWays(m, n, x) {     const memo = Array.from({ length: n + 1 }, () => Array(x + 1).fill(-1));     return countRecur(m, n, x, memo); }  const m = 6, n = 3, x = 8; console.log(noOfWays(m, n, x)); 

Output
21

Using Bottom-Up DP (Tabulation) - O(n*x*m) Time and O(n*x) Space

The idea is to fill the DP table based on previous values. For each dice i and sum j, we try all the values k from 1 to m. The table is filled in an iterative manner from i = 1 to i = n and for each sum j from 1 to x.

The dynamic programming relation is as follows: 

  • dp[i][j] = sum(dp[i-1][j-k]) where k is in range [1, m] and j-k >= 0.
C++
// C++ program to implement // dice throw problem using tabulation #include <bits/stdc++.h> using namespace std;  int noOfWays(int m, int n, int x) {      // Create a 2D dp array with (n+1) rows and (x+1) columns     // dp[i][j] will store the number of ways to get a sum    	// of 'j' using 'i' dice     vector<vector<int>> dp(n + 1, vector<int>(x + 1, 0));      // Base case: There is 1 way to get   	// a sum of 0 with 0 dice     dp[0][0] = 1;      // Loop through each dice (i) from 1 to n     for (int i = 1; i <= n; i++) {                // Loop through each sum (j) from 1 to x         for (int j = 1; j <= x; j++) {                        // Loop through all possible dice values (k) from 1 to m             // and if the sum j - k is valid (non-negative),            	// add the number of ways from dp[i-1][j-k]             for (int k = 1; k <= m && j - k >= 0; k++) {                 dp[i][j] += dp[i - 1][j - k];             }         }     }      // The result will be in dp[n][x], which contains   	// the number of ways to get sum 'x' using 'n' dice     return dp[n][x]; }  int main() {     int m = 6, n = 3, x = 8;     cout << noOfWays(m, n, x); } 
Java
// Java program to implement // dice throw problem using tabulation  class GfG {      static int noOfWays(int m, int n, int x) {          // Create a 2D dp array with (n+1) rows and (x+1)         // columns dp[i][j] will store the number of ways to         // get a sum of 'j' using 'i' dice         int[][] dp = new int[n + 1][x + 1];          // Base case: There is 1 way to get a sum of 0 with         // 0 dice         dp[0][0] = 1;          // Loop through each dice (i) from 1 to n         for (int i = 1; i <= n; i++) {                        // Loop through each sum (j) from 1 to x             for (int j = 1; j <= x; j++) {                                // Loop through all possible dice values (k)                 // from 1 to m and if the sum j - k is valid                 // (non-negative), add the number of ways                 // from dp[i-1][j-k]                 for (int k = 1; k <= m && j - k >= 0; k++) {                     dp[i][j] += dp[i - 1][j - k];                 }             }         }          // The result will be in dp[n][x], which contains         // the number of ways to get sum 'x' using 'n' dice         return dp[n][x];     }      public static void main(String[] args) {         int m = 6, n = 3, x = 8;         System.out.println(noOfWays(m, n, x));     } } 
Python
# Python program to implement # dice throw problem using tabulation  def noOfWays(m, n, x):        # Create a 2D dp array with (n+1) rows and (x+1) columns     # dp[i][j] will store the number of ways to get a      # sum of 'j' using 'i' dice     dp = [[0 for _ in range(x + 1)] for _ in range(n + 1)]      # Base case: There is 1 way to get a sum      # of 0 with 0 dice     dp[0][0] = 1      # Loop through each dice (i) from 1 to n     for i in range(1, n + 1):                # Loop through each sum (j) from 1 to x         for j in range(1, x + 1):                        # Loop through all possible dice values (k) from 1 to m             # and if the sum j - k is valid (non-negative),              # add the number of ways from dp[i-1][j-k]             for k in range(1, m + 1):                 if j - k >= 0:                     dp[i][j] += dp[i - 1][j - k]      # The result will be in dp[n][x], which contains      # the number of ways to get sum 'x' using 'n' dice     return dp[n][x]   if __name__ == "__main__":        m = 6     n = 3      x = 8      print(noOfWays(m, n, x)) 
C#
// C# program to implement // dice throw problem using tabulation using System;  class GfG {      static int noOfWays(int m, int n, int x) {          // Create a 2D dp array with (n+1) rows and (x+1)         // columns dp[i, j] will store the number of ways to         // get a sum of 'j' using 'i' dice         int[, ] dp = new int[n + 1, x + 1];          // Base case: There is 1 way to get a sum of 0 with         // 0 dice         dp[0, 0] = 1;          // Loop through each dice (i) from 1 to n         for (int i = 1; i <= n; i++) {                        // Loop through each sum (j) from 1 to x             for (int j = 1; j <= x; j++) {                                // Loop through all possible dice values (k)                 // from 1 to m and if the sum j - k is valid                 // (non-negative), add the number of ways                 // from dp[i-1, j-k]                 for (int k = 1; k <= m && j - k >= 0; k++) {                     dp[i, j] += dp[i - 1, j - k];                 }             }         }          // The result will be in dp[n, x], which contains         // the number of ways to get sum 'x' using 'n' dice         return dp[n, x];     }      static void Main(string[] args) {         int m = 6, n = 3,x = 8;          Console.WriteLine(noOfWays(m, n, x));     } } 
JavaScript
// JavaScript program to implement // dice throw problem using tabulation  function noOfWays(m, n, x) {     const dp = Array.from({length : n + 1},                           () => Array(x + 1).fill(0));      // Base case: There's 1 way to achieve a sum of 0 using     // 0 dice     dp[0][0] = 1;      // Loop through each dice (i) from 1 to n (number of     // dice)     for (let i = 1; i <= n; i++) {              // Loop through each sum (j) from 1 to x (target         // sum)         for (let j = 1; j <= x; j++) {                      // Loop through all possible outcomes of the             // dice (k) from 1 to m (faces of the dice) If             // the sum j - k is valid (non-negative),             // increment the number of ways to achieve sum j             for (let k = 1; k <= m && j - k >= 0; k++) {                 dp[i][j] += dp[i - 1][j - k];             }         }     }      // Return the number of ways to achieve the sum x using     // n dice     return dp[n][x]; }  const m = 6, n = 3, x = 8; console.log(noOfWays(m, n, x)); 

Output
21

Using Space Optimized DP - O(n*x*m) Time and O(x) Space

In previous approach of dynamic programming we have derive the relation between states as given below:

  • dp[i][j] = sum(dp[i-1][j-k]) where k is in range [1, m] and j-k >= 0.

If we observe that for calculating current dp[i][j] state we only need previous row. There is no need to store all the previous states just one previous state is used to compute result.

C++
// C++ program to implement // dice throw problem using space optimised #include <bits/stdc++.h> using namespace std;  int noOfWays(int m, int n, int x) {      // Initialize a 1D dp array with size (x + 1), all values set to 0.     // dp[j] will store the number of ways to get a sum of 'j' using 'i' dice.     vector<int> dp(x + 1, 0);      // Base case: There is 1 way to get     // sum 0 (using no dice)     dp[0] = 1;      // Iterate through each dice (i) from 1 to n (number of dice)     for (int i = 1; i <= n; i++) {          // Iterate backwards through all possible sums (j) from x to 1         // to ensure that the results from previous dice         // counts are not overwritten         for (int j = x; j >= 1; j--) {              // Reset dp[j] before calculating its           	// new value for the current dice             dp[j] = 0;              // Loop through all possible outcomes of the dice (k)            	// from 1 to m (faces of the dice)             // If j - k is a valid sum (non-negative), update dp[j]             for (int k = 1; k <= m && j - k >= 0; k++) {                 dp[j] += dp[j - k];             }         }          // After each dice iteration, set dp[0] to 0        	// since there are no ways to achieve sum 0         dp[0] = 0;     }      // Return the number of ways to get    	// sum x using n dice     return dp[x]; }  int main() {     int m = 6, n = 3, x = 8;     cout << noOfWays(m, n, x); } 
Java
// Java program to implement // dice throw problem using space optimised  class GfG {      // Function to find the number of ways to get a sum 'x'     // with 'n' dice     static int noOfWays(int m, int n, int x) {          // Initialize a 1D dp array of size (x + 1), all         // values initially 0 dp[j] will store the number of         // ways to get a sum of 'j' using 'i' dice         int[] dp = new int[x + 1];          // Base case: There is 1 way to get sum 0 (using no         // dice)         dp[0] = 1;          // Iterate through each dice (i) from 1 to n (total         // number of dice)         for (int i = 1; i <= n; i++) {              // Iterate backwards through all possible sums             // (j) from x to 1 to avoid overwriting the             // results from the previous dice count             for (int j = x; j >= 1; j--) {                  // Reset dp[j] before calculating its new                 // value for the current dice                 dp[j] = 0;                  // Loop through all possible outcomes of the                 // dice (k) from 1 to m (faces of the dice)                 // If j - k is a valid sum (non-negative),                 // update dp[j]                 for (int k = 1; k <= m && j - k >= 0; k++) {                     dp[j] += dp[j - k];                 }             }              // After each dice iteration, set dp[0] to 0             // since there are no ways to achieve sum 0             dp[0] = 0;         }          // Return the number of ways to get sum 'x' using         // 'n' dice         return dp[x];     }      public static void main(String[] args) {         int m = 6, n = 3, x = 8;         System.out.println(noOfWays(m, n, x));     } } 
Python
# Python program to implement # dice throw problem using space optimised  def noOfWays(m, n, x):        # Initialize a 1D dp array where dp[j] will store      # the number of ways to get a sum of 'j' using 'i' dice     dp = [0] * (x + 1)      # Base case: There is 1 way to get a sum      # of 0 (using no dice)     dp[0] = 1      # Iterate through each dice (i) from 1 to n (total number of dice)     for i in range(1, n + 1):                # Iterate backwards through all possible sums (j) from x to 1         # to avoid overwriting the results from the previous dice count         for j in range(x, 0, -1):                        # Reset dp[j] before calculating its new value             # for the current dice             dp[j] = 0                          # Loop through all possible outcomes of the dice             # (k) from 1 to m (faces of the dice)             # If j - k is a valid sum (non-negative), update dp[j]             for k in range(1, m + 1):                 if j - k >= 0:                     dp[j] += dp[j - k]                              # After each dice iteration, set dp[0] to 0          # since there are no ways to achieve sum 0         dp[0] = 0      # Return the number of ways to get     # sum 'x' using 'n' dice     return dp[x]   if __name__ == "__main__":      m = 6     n = 3     x = 8     print(noOfWays(m, n, x)) 
C#
// C# program to implement // dice throw problem using space optimized  using System;  class GfG {      // Function to calculate the number of ways to get a sum     // 'x' using 'n' dice     static int noOfWays(int m, int n, int x) {          // Create a 1D dp array to store the number of ways         // to achieve each sum from 0 to x         int[] dp = new int[x + 1];          // Base case: there is exactly 1 way to get a sum of         // 0 (using no dice)         dp[0] = 1;          // Iterate over the number of dice         for (int i = 1; i <= n; i++) {                        // Iterate backwards through all possible sums             // (from x down to 1) to prevent overwriting the             // dp values             for (int j = x; j >= 1; j--) {                                // Reset dp[j] before calculating its new                 // value for the current dice                 dp[j] = 0;                                // Loop through all possible dice outcomes                 // (1 to m faces of the dice) and add the                 // number of ways to achieve sum (j - k) to                 // dp[j]                 for (int k = 1; k <= m && j - k >= 0; k++) {                     dp[j] += dp[j - k];                 }             }                        // After processing a dice, we set dp[0] to 0             // because there are no ways to achieve sum 0             // after using any dice             dp[0] = 0;         }          // Return the number of ways to achieve the sum 'x'         // using 'n' dice         return dp[x];     }      static void Main(string[] args) {         int m = 6, n = 3, x = 8;         Console.WriteLine(noOfWays(m, n, x));     } } 
JavaScript
// JavaScript program to implement // dice throw problem using space optimized  function noOfWays(m, n, x) {      // Initialize dp array to store the number of ways to     // achieve each sum from 0 to x All values initially set     // to 0     const dp = Array(x + 1).fill(0);      // Base case: there is exactly 1 way to achieve sum 0     // (using no dice)     dp[0] = 1;      // Iterate over the number of dice     for (let i = 1; i <= n; i++) {              // Iterate backwards through all possible sums from         // x to 1 to avoid overwriting dp values         for (let j = x; j >= 1; j--) {                      // Reset dp[j] to 0 before calculating its new             // value             dp[j] = 0;                          // Loop through all possible dice outcomes (1 to             // m faces of the dice) Add the number of ways             // to achieve sum (j - k) to dp[j]             for (let k = 1; k <= m && j - k >= 0; k++) {                 dp[j] += dp[j - k];             }         }                  // After processing each dice, set dp[0] to 0 since         // it's not valid to have sum 0 with any dice         dp[0] = 0;     }      // Return the number of ways to achieve the sum x using     // n dice     return dp[x]; }  const m = 6, n = 3, x = 8; console.log(noOfWays(m, n, x)); 

Output
21

Next Article
Dice Throw

K

kartik
Improve
Article Tags :
  • Dynamic Programming
  • Mathematical
  • DSA
  • Amazon
Practice Tags :
  • Amazon
  • Dynamic Programming
  • Mathematical

Similar Reads

    The dice problem
    You are given a cubic dice with 6 faces. All the individual faces have a number printed on them. The numbers are in the range of 1 to 6, like any ordinary dice. You will be provided with a face of this cube, your task is to guess the number on the opposite face of the cube.Examples:Input: n = 2Outpu
    4 min read
    Probability of winning in a Die-throw game
    Given that 2 players are playing a die-throw game. The game is one player throws a die and he got a point, he can move forward accordingly to the point. All occurrences to get the point have equal probability. Let player1 start a point x and player2 start a point y. Player 1 can receive a point up t
    8 min read
    randrange() in Python
    The randrange() function in Python's random module is used to generate a random number within a specified range. It allows defining a start, stop, and an optional step value to control the selection of numbers. Unlike randint(), which includes the upper limit, randrange() excludes the stop value. Ex
    4 min read
    CSES Solutions - Dice Combinations
    Your task is to count the number of ways to construct sum N by throwing a dice one or more times. Each throw produces an outcome between 1 and 6. Examples: Input: N = 3Output: 4Explanation: There are 4 ways to make sum = 3. Using 1 die {3}, sum = 3.Using 2 dice {1, 2}, sum = 1 + 2 = 3.Using 2 dice {
    8 min read
    Probability of getting more value in third dice throw
    Given that the three players playing a game of rolling dice. Player1 rolled a die got A and player2 rolled a die got B. The task is to find the probability of player3 to win the match and Player3 wins if he gets more than both of them.Examples: Input: A = 2, B = 3Output: 1/2Player3 wins if he gets 4
    5 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences