Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on String
  • Practice String
  • MCQs on String
  • Tutorial on String
  • String Operations
  • Sort String
  • Substring & Subsequence
  • Iterate String
  • Reverse String
  • Rotate String
  • String Concatenation
  • Compare Strings
  • KMP Algorithm
  • Boyer-Moore Algorithm
  • Rabin-Karp Algorithm
  • Z Algorithm
  • String Guide for CP
Open In App
Next Article:
Check if a given string is a rotation of a palindrome
Next article icon

Check if a given string is a rotation of a palindrome

Last Updated : 07 Jul, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a string, check if it is a rotation of a palindrome. For example your function should return true for "aab" as it is a rotation of "aba". 

Examples: 

Input:  str = "aaaad" Output: 1   // "aaaad" is a rotation of a palindrome "aadaa"  Input:  str = "abcd" Output: 0 // "abcd" is not a rotation of any palindrome.

We strongly recommend that you click here and practice it, before moving on to the solution.

A Simple Solution is to take the input string, try every possible rotation of it and return true if a rotation is a palindrome. If no rotation is palindrome, then return false. 
Following is the implementation of this approach.

Implementation:

C++
#include <iostream> #include <string> using namespace std;  // A utility function to check if a string str is palindrome bool isPalindrome(string str) {     // Start from leftmost and rightmost corners of str     int l = 0;     int h = str.length() - 1;      // Keep comparing characters while they are same     while (h > l)         if (str[l++] != str[h--])             return false;      // If we reach here, then all characters were matching     return true; }  // Function to check if a given string is a rotation of a // palindrome. bool isRotationOfPalindrome(string str) {     // If string itself is palindrome     if (isPalindrome(str))         return true;      // Now try all rotations one by one     int n = str.length();     for (int i = 0; i < n - 1; i++) {         string str1 = str.substr(i + 1, n - i - 1);         string str2 = str.substr(0, i + 1);          // Check if this rotation is palindrome         if (isPalindrome(str1.append(str2)))             return true;     }     return false; }  // Driver program to test above function int main() {     cout << isRotationOfPalindrome("aab") << endl;     cout << isRotationOfPalindrome("abcde") << endl;     cout << isRotationOfPalindrome("aaaad") << endl;     return 0; } 
Java
// Java program to check if a given string // is a rotation of a palindrome import java.io.*;  class Palindrome {     // A utility function to check if a string str is palindrome     static boolean isPalindrome(String str)     {         // Start from leftmost and rightmost corners of str         int l = 0;         int h = str.length() - 1;          // Keep comparing characters while they are same         while (h > l)             if (str.charAt(l++) != str.charAt(h--))                 return false;          // If we reach here, then all characters were matching         return true;     }      // Function to check if a given string is a rotation of a     // palindrome     static boolean isRotationOfPalindrome(String str)     {         // If string itself is palindrome         if (isPalindrome(str))             return true;          // Now try all rotations one by one         int n = str.length();         for (int i = 0; i < n - 1; i++) {             String str1 = str.substring(i + 1);             String str2 = str.substring(0, i + 1);              // Check if this rotation is palindrome             if (isPalindrome(str1 + str2))                 return true;         }         return false;     }      // driver program     public static void main(String[] args)     {         System.out.println((isRotationOfPalindrome("aab")) ? 1 : 0);         System.out.println((isRotationOfPalindrome("abcde")) ? 1 : 0);         System.out.println((isRotationOfPalindrome("aaaad")) ? 1 : 0);     } }  // Contributed by Pramod Kumar 
Python3
# Python program to check if a given string is a rotation # of a palindrome  # A utility function to check if a string str is palindrome def isPalindrome(string):      # Start from leftmost and rightmost corners of str     l = 0     h = len(string) - 1      # Keep comparing characters while they are same     while h > l:         l+= 1         h-= 1         if string[l-1] != string[h + 1]:             return False      # If we reach here, then all characters were matching         return True  # Function to check if a given string is a rotation of a # palindrome. def isRotationOfPalindrome(string):      # If string itself is palindrome     if isPalindrome(string):         return True      # Now try all rotations one by one     n = len(string)     for i in range(n-1):         string1 = string[i + 1:n]         string2 = string[0:i + 1]          # Check if this rotation is palindrome         string1+=(string2)         if isPalindrome(string1):             return True      return False  # Driver program print ("1" if isRotationOfPalindrome("aab") == True else "0") print ("1" if isRotationOfPalindrome("abcde") == True else "0") print ("1" if isRotationOfPalindrome("aaaad") == True else "0")  # This code is contributed by BHAVYA JAIN 
C#
// C# program to check if a given string // is a rotation of a palindrome using System;  class GFG {     // A utility function to check if     // a string str is palindrome     public static bool isPalindrome(string str)     {         // Start from leftmost and         // rightmost corners of str         int l = 0;         int h = str.Length - 1;          // Keep comparing characters         // while they are same         while (h > l) {             if (str[l++] != str[h--]) {                 return false;             }         }          // If we reach here, then all         // characters were matching         return true;     }      // Function to check if a given string     // is a rotation of a palindrome     public static bool isRotationOfPalindrome(string str)     {         // If string itself is palindrome         if (isPalindrome(str)) {             return true;         }          // Now try all rotations one by one         int n = str.Length;         for (int i = 0; i < n - 1; i++) {             string str1 = str.Substring(i + 1);             string str2 = str.Substring(0, i + 1);              // Check if this rotation is palindrome             if (isPalindrome(str1 + str2)) {                 return true;             }         }         return false;     }      // Driver Code     public static void Main(string[] args)     {         Console.WriteLine((isRotationOfPalindrome("aab")) ? 1 : 0);         Console.WriteLine((isRotationOfPalindrome("abcde")) ? 1 : 0);         Console.WriteLine((isRotationOfPalindrome("aaaad")) ? 1 : 0);     } }  // This code is contributed by Shrikant13 
JavaScript
<script>  // javascript program to check if a given string // is a rotation of a palindrome      // A utility function to check if     // a string str is palindrome     function  isPalindrome( str)     {              // Start from leftmost and         // rightmost corners of str         var l = 0;         var h = str.length - 1;            // Keep comparing characters         // while they are same         while (h > l) {             if (str[l++] != str[h--]) {                 return false;             }         }            // If we reach here, then all         // characters were matching         return true;     }        // Function to check if a given string     // is a rotation of a palindrome     function isRotationOfPalindrome( str)     {         // If string itself is palindrome         if (isPalindrome(str)) {             return true;         }            // Now try all rotations one by one         var n = str.length;         for (var i = 0; i < n - 1; i++) {             var str1 = str.substring(i + 1);             var str2 = str.substring(0, i + 1);                // Check if this rotation is palindrome             if (isPalindrome(str1 + str2)) {                 return true;             }         }         return false;     }        // Driver Code         document.write((isRotationOfPalindrome("aab")) ? 1 : 0 );         document.write("<br>");         document.write((isRotationOfPalindrome("abcde")) ? 1 : 0 );         document.write("<br>");         document.write((isRotationOfPalindrome("aaaad")) ? 1 : 0);  // This code is contributed by bunnyram19. </script> 

Output
1 0 1

Time Complexity: O(n2) 
Auxiliary Space: O(n) for storing rotations. 

Note that the above algorithm can be optimized to work in O(1) extra space as we can rotate a string in O(n) time and O(1) extra space.

An Optimized Solution can work in O(n) time. The idea here is to use Manacher's algorithm to solve the above problem. 

  • Let the given string be 's' and length of string be 'n'.
  • Preprocess/Prepare the string to use Manachers Algorithm, to help find even length palindrome, for which we concatenate the given string with itself (to find if rotation will give a palindrome) and add '$' symbol at the beginning and '#' characters between letters. We end the string using '@'. So for 'aaad' input the reformed string will be - '$#a#a#a#a#d#a#a#a#a#d#@'
  • Now the problem reduces to finding Longest Palindromic Substring using Manacher's algorithm of length n or greater in the string.
  • If there is palindromic substring of length n, then return true, else return false. If we find a palindrome of greater length then we check if the size of our input is even or odd, correspondingly our palindrome length found should also be even or odd.

For eg. if our input size is 3 and while performing Manacher's Algorithm we get a palindrome size of 5 it obviously would contain a substring of size of 3 which is a palindrome but the same cannot be said for a palindrome of length of 4. Hence we check if both the size of the input and the size of palindrome found at any instance is both even or both odd. 

Boundary case would be a word with same letters that would defy the above property but for that case our algorithm will find both even length and odd length palindrome one of them being a substring, hence it wont be a problem.

Below is the implementation of the above algorithm: 

C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std;  // Function to check if we have found // a palindrome of same length as the input // which is a rotation of the input string bool checkPal(int x, int len) {     if (x == len)         return true;     else if (x > len) {         if ((x % 2 == 0 && len % 2 == 0)             || (x % 2 != 0 && len % 2 != 0))             return true;     }     return false; }  // Function to preprocess the string // for Manacher's Algorithm string reform(string s) {     string s1 = "$#";      // Adding # between the characters     for (int i = 0; i < s.size(); i++) {         s1 += s[i];         s1 += '#';     }      s1 += '@';     return s1; }  // Function to find the longest palindromic // substring using Manacher's Algorithm bool longestPal(string s, int len) {      // Current Left Position     int mirror = 0;      // Center Right Position     int R = 0;      // Center Position     int C = 0;      // LPS Length Array     int P[s.size()] = { 0 };     int x = 0;      // Get currentLeftPosition Mirror     // for currentRightPosition i     for (int i = 1; i < s.size() - 1; i++) {         mirror = 2 * C - i;          // If currentRightPosition i is         // within centerRightPosition R         if (i < R)             P[i] = min((R - i), P[mirror]);          // Attempt to expand palindrome centered         // at currentRightPosition i         while (s[i + (1 + P[i])] == s[i - (1 + P[i])]) {             P[i]++;         }          // Check for palindrome         bool ans = checkPal(P[i], len);         if (ans)             return true;          // If palindrome centered at currentRightPosition i         // expand beyond centerRightPosition R,         // adjust centerPosition C based on expanded palindrome         if (i + P[i] > R) {             C = i;             R = i + P[i];         }     }      return false; }  // Driver code int main() {     string s = "aaaad";     int len = s.size();     s += s;     s = reform(s);     cout << longestPal(s, len);      return 0; }  // This code is contributed by Vindusha Pankajakshan 
Java
// Java implementation of the approach  import java.util.*;  class GFG  {  // Function to check if we have found  // a palindrome of same length as the input  // which is a rotation of the input string  static boolean checkPal(int x, int len)  {     if (x == len)     {         return true;     }      else if (x > len)      {         if ((x % 2 == 0 && len % 2 == 0) ||             (x % 2 != 0 && len % 2 != 0))          {             return true;         }     }     return false; }  // Function to preprocess the string  // for Manacher's Algorithm  static String reform(String s) {     String s1 = "$#";      // Adding # between the characters      for (int i = 0; i < s.length(); i++)      {         s1 += s.charAt(i);         s1 += '#';     }      s1 += '@';     return s1; }  // Function to find the longest palindromic  // substring using Manacher's Algorithm  static boolean longestPal(String s, int len)  {      // Current Left Position      int mirror = 0;      // Center Right Position      int R = 0;      // Center Position      int C = 0;      // LPS Length Array      int[] P = new int[s.length()];     int x = 0;      // Get currentLeftPosition Mirror      // for currentRightPosition i      for (int i = 1; i < s.length() - 1; i++)     {         mirror = 2 * C - i;          // If currentRightPosition i is          // within centerRightPosition R          if (i < R)          {             P[i] = Math.min((R - i), P[mirror]);         }          // Attempt to expand palindrome centered          // at currentRightPosition i          while (s.charAt(i + (1 + P[i])) ==                 s.charAt(i - (1 + P[i])))         {             P[i]++;         }          // Check for palindrome          boolean ans = checkPal(P[i], len);         if (ans)          {             return true;         }          // If palindrome centered at currentRightPosition i          // expand beyond centerRightPosition R,          // adjust centerPosition C based on expanded palindrome          if (i + P[i] > R)          {             C = i;             R = i + P[i];         }     }     return false; }  // Driver code  public static void main(String[] args)  {     String s = "aaaad";     int len = s.length();     s += s;     s = reform(s);     System.out.println(longestPal(s, len) ? 1 : 0); } }   // This code is contributed by PrinciRaj1992 
Python3
# Python implementation of the approach   # Function to check if we have found  # a palindrome of same length as the input  # which is a rotation of the input string  def checkPal (x, Len):      if (x == Len):         return True     elif (x > Len):         if ((x % 2 == 0 and Len % 2 == 0) or (x % 2 != 0 and Len % 2 != 0)):             return True      return False  # Function to preprocess the string  # for Manacher's Algorithm  def reform (s):      s1 = "$#"      # Adding '#' between the characters     for i in range(len(s)):         s1 += s[i]         s1 += "#"      s1 += "@"     return s1  # Function to find the longest palindromic  # substring using Manacher's Algorithm  def longestPal (s, Len):      # Current Left Position      mirror = 0         # Center Right Position      R = 0        # Center Position      C = 0         # LPS Length Array      P = [0] * len(s)     x = 0         # Get currentLeftPosition Mirror      # for currentRightPosition i      for i in range(1, len(s) - 1):         mirror = 2 * C - i           # If currentRightPosition i is          # within centerRightPosition R          if (i < R):             P[i] = min((R-i), P[mirror])          # Attempt to expand palindrome centered          # at currentRightPosition i         while (s[i + (1 + P[i])] == s[i - (1 + P[i])]):             P[i] += 1          # Check for palindrome         ans = checkPal(P[i], Len)         if (ans):             return True                  # If palindrome centered at current         # RightPosition i expand beyond          # centerRightPosition R, adjust centerPosition         # C based on expanded palindrome         if (i + P[i] > R):             C = i              R = i + P[i]      return False  # Driver Code if __name__ == '__main__':          s = "aaaad"     Len = len(s)     s += s     s = reform(s)     print(longestPal(s, Len))  # This code is contributed by himanshu77 
C#
// C# implementation of the approach  using System; using System.Collections.Generic;   class GFG  {  // Function to check if we have found  // a palindrome of same length as the input  // which is a rotation of the input string  static bool checkPal(int x, int len)  {     if (x == len)     {         return true;     }      else if (x > len)      {         if ((x % 2 == 0 && len % 2 == 0) ||             (x % 2 != 0 && len % 2 != 0))          {             return true;         }     }     return false; }  // Function to preprocess the string  // for Manacher's Algorithm  static String reform(String s) {     String s1 = "$#";      // Adding # between the characters      for (int i = 0; i < s.Length; i++)      {         s1 += s[i];         s1 += '#';     }      s1 += '@';     return s1; }  // Function to find the longest palindromic  // substring using Manacher's Algorithm  static bool longestPal(String s, int len)  {      // Current Left Position      int mirror = 0;      // Center Right Position      int R = 0;      // Center Position      int C = 0;      // LPS Length Array      int[] P = new int[s.Length];     int x = 0;      // Get currentLeftPosition Mirror      // for currentRightPosition i      for (int i = 1; i < s.Length - 1; i++)     {         mirror = 2 * C - i;          // If currentRightPosition i is          // within centerRightPosition R          if (i < R)          {             P[i] = Math.Min((R - i), P[mirror]);         }          // Attempt to expand palindrome centered          // at currentRightPosition i          while (s[i + (1 + P[i])] == s[i - (1 + P[i])])         {             P[i]++;         }          // Check for palindrome          bool ans = checkPal(P[i], len);         if (ans)          {             return true;         }          // If palindrome centered at currentRightPosition i          // expand beyond centerRightPosition R,          // adjust centerPosition C based on expanded palindrome          if (i + P[i] > R)          {             C = i;             R = i + P[i];         }     }     return false; }  // Driver code  public static void Main(String[] args)  {     String s = "aaaad";     int len = s.Length;     s += s;     s = reform(s);     Console.WriteLine(longestPal(s, len) ? 1 : 0); } }   // This code is contributed by Rajput-Ji 
JavaScript
<script> // javascript implementation of the approach       // Function to check if we have found     // a palindrome of same length as the input     // which is a rotation of the input string     function checkPal(x , len) {         if (x == len) {             return true;         } else if (x > len) {             if ((x % 2 == 0 && len % 2 == 0) ||              (x % 2 != 0 && len % 2 != 0))              {                 return true;             }         }         return false;     }      // Function to preprocess the string     // for Manacher's Algorithm      function reform( s) {         var s1 = "$#";          // Adding # between the characters         for (i = 0; i < s.length; i++) {             s1 += s.charAt(i);             s1 += '#';         }          s1 += '@';         return s1;     }      // Function to find the longest palindromic     // substring using Manacher's Algorithm     function longestPal( s , len) {          // Current Left Position         var mirror = 0;          // Center Right Position         var R = 0;          // Center Position         var C = 0;          // LPS Length Array         var P = Array(s.length).fill(0);         var x = 0;          // Get currentLeftPosition Mirror         // for currentRightPosition i         for (i = 1; i < s.length - 1; i++) {             mirror = 2 * C - i;              // If currentRightPosition i is             // within centerRightPosition R             if (i < R) {                 P[i] = Math.min((R - i), P[mirror]);             }              // Attempt to expand palindrome centered             // at currentRightPosition i             while (s.charAt(i + (1 + P[i])) == s.charAt(i - (1 + P[i]))) {                 P[i]++;             }              // Check for palindrome             var ans = checkPal(P[i], len);             if (ans) {                 return true;             }              // If palindrome centered at currentRightPosition i             // expand beyond centerRightPosition R,             // adjust centerPosition C based on expanded palindrome             if (i + P[i] > R) {                 C = i;                 R = i + P[i];             }         }         return false;     }      // Driver code         var s = "aaaad";         var len = s.length;         s += s;         s = reform(s);         document.write(longestPal(s, len) ? 1 : 0);  // This code is contributed by umadevi9616  </script> 

Output
1

Time Complexity : O(n2)

Auxiliary Space: O(n)

 


Next Article
Check if a given string is a rotation of a palindrome

A

Aarti_Rathi
Improve
Article Tags :
  • Strings
  • DSA
  • palindrome
Practice Tags :
  • palindrome
  • Strings

Similar Reads

    Palindrome String Coding Problems
    A string is called a palindrome if the reverse of the string is the same as the original one.Example: “madam”, “racecar”, “12321”.Palindrome StringProperties of a Palindrome String:A palindrome string has some properties which are mentioned below:A palindrome string has a symmetric structure which m
    2 min read
    Palindrome String
    Given a string s, the task is to check if it is palindrome or not.Example:Input: s = "abba"Output: 1Explanation: s is a palindromeInput: s = "abc" Output: 0Explanation: s is not a palindromeUsing Two-Pointers - O(n) time and O(1) spaceThe idea is to keep two pointers, one at the beginning (left) and
    13 min read

    Check Palindrome by Different Language

    Program to Check Palindrome Number in C
    Palindrome numbers are those numbers that remain the same even after reversing the order of their digits. In this article, we will learn how to check whether the given number is a palindrome number using C program.ExamplesInput: 121Output: YesExplanation: The number 121 remains the same when its dig
    3 min read
    C Program to Check for Palindrome String
    A string is said to be palindrome if the reverse of the string is the same as the string. In this article, we will learn how to check whether the given string is palindrome or not using C program.The simplest method to check for palindrome string is to reverse the given string and store it in a temp
    4 min read
    C++ Program to Check if a Given String is Palindrome or Not
    A string is said to be palindrome if the reverse of the string is the same as the original string. In this article, we will check whether the given string is palindrome or not in C++.ExamplesInput: str = "ABCDCBA"Output: "ABCDCBA" is palindromeExplanation: Reverse of the string str is "ABCDCBA". So,
    4 min read
    Java Program to Check Whether a String is a Palindrome
    A string in Java can be called a palindrome if we read it from forward or backward, it appears the same or in other words, we can say if we reverse a string and it is identical to the original string for example we have a string s = "jahaj " and when we reverse it s = "jahaj"(reversed) so they look
    8 min read

    Easy Problems on Palindrome

    Sentence Palindrome
    Given a sentence s, the task is to check if it is a palindrome sentence or not. A palindrome sentence is a sequence of characters, such as a word, phrase, or series of symbols, that reads the same backward as forward after converting all uppercase letters to lowercase and removing all non-alphanumer
    9 min read
    Check if actual binary representation of a number is palindrome
    Given a non-negative integer n. The problem is to check if binary representation of n is palindrome or not. Note that the actual binary representation of the number is being considered for palindrome checking, no leading 0’s are being considered. Examples : Input : 9 Output : Yes (9)10 = (1001)2 Inp
    6 min read
    Print longest palindrome word in a sentence
    Given a string str, the task is to print longest palindrome word present in the string str.Examples: Input : Madam Arora teaches Malayalam Output: Malayalam Explanation: The string contains three palindrome words (i.e., Madam, Arora, Malayalam) but the length of Malayalam is greater than the other t
    14 min read
    Count palindrome words in a sentence
    Given a string str and the task is to count palindrome words present in the string str. Examples: Input : Madam Arora teaches malayalam Output : 3 The string contains three palindrome words (i.e., Madam, Arora, malayalam) so the count is three. Input : Nitin speaks malayalam Output : 2 The string co
    5 min read
    Check if characters of a given string can be rearranged to form a palindrome
    Given a string, Check if the characters of the given string can be rearranged to form a palindrome. For example characters of "geeksogeeks" can be rearranged to form a palindrome "geeksoskeeg", but characters of "geeksforgeeks" cannot be rearranged to form a palindrome. Recommended PracticeAnagram P
    14 min read
    Lexicographically first palindromic string
    Rearrange the characters of the given string to form a lexicographically first palindromic string. If no such string exists display message "no palindromic string". Examples: Input : malayalam Output : aalmymlaa Input : apple Output : no palindromic string Simple Approach: 1. Sort the string charact
    13 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences