Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on Stack
  • Practice Stack
  • MCQs on Stack
  • Stack Tutorial
  • Stack Operations
  • Stack Implementations
  • Monotonic Stack
  • Infix to Postfix
  • Prefix to Postfix
  • Prefix to Infix
  • Advantages & Disadvantages
Open In App
Next Article:
Length of longest balanced parentheses prefix
Next article icon

Valid Parentheses in an Expression

Last Updated : 13 Jan, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a string s representing an expression containing various types of brackets: {}, (), and [], the task is to determine whether the brackets in the expression are balanced or not. A balanced expression is one where every opening bracket has a corresponding closing bracket in the correct order.

Example: 

Input: s = "[{()}]"
Output: true
Explanation: All the brackets are well-formed.

Input: s = "[()()]{}"
Output: true
Explanation: All the brackets are well-formed.

Input: s = "([]"
Output: false
Explanation: The expression is not balanced as there is a missing ')' at the end.

Input: s = "([{]})"
Output: false
Explanation: The expression is not balanced because there is a closing ']' before the closing '}'.

Table of Content

  • [Expected Approach 1] Using Stack - O(n) Time and O(n) Space
  • [Expected Approach 2] Without using Stack - O(n) Time and O(1) Space

[Expected Approach 1] Using Stack - O(n) Time and O(n) Space

The idea is to put all the opening brackets in the stack. Whenever you hit a closing bracket, search if the top of the stack is the opening bracket of the same nature. If this holds then pop the stack and continue the iteration. In the end if the stack is empty, it means all brackets are balanced or well-formed. Otherwise, they are not balanced.

Step-by-step approach:

  • Declare a character stack (say temp).
  • Now traverse the string s. 
    • If the current character is an opening bracket ( '(' or '{'  or '[' ) then push it to stack.
    • If the current character is a closing bracket ( ')' or '}' or ']' ) and the closing bracket matches with the opening bracket at the top of stack, then pop the opening bracket. Else s is not balanced.
  • After complete traversal, if some starting brackets are left in the stack then the expression is not balanced, else balanced.

Illustration:


C++
// C++ program to check if parentheses are balanced  #include <bits/stdc++.h> using namespace std;  bool isBalanced(const string& s) {        // Declare a stack to store the opening brackets     stack<char> st;     for (int i = 0; i < s.length(); i++) {                  // Check if the character is an opening bracket         if (s[i] == '(' || s[i] == '{' || s[i] == '[') {             st.push(s[i]);          }                 else {              // If it's a closing bracket, check if the stack is non-empty             // and if the top of the stack is a matching opening bracket             if (!st.empty() &&                  ((st.top() == '(' && s[i] == ')') ||                  (st.top() == '{' && s[i] == '}') ||                  (st.top() == '[' && s[i] == ']'))) {                  // Pop the matching opening bracket                 st.pop();              }             else {                                  // Unmatched closing bracket                 return false;              }         }     }          // If stack is empty, return true (balanced), otherwise false     return st.empty(); }  int main() {       string s = "{([])}";     if (isBalanced(s))         cout << "true";     else         cout << "false";     return 0; } 
Java
// Java program to check if parentheses are balanced  import java.util.Stack;  class GfG {     static boolean isBalanced(String s) {            // Declare a stack to store the opening brackets         Stack<Character> st = new Stack<>();         for (int i = 0; i < s.length(); i++) {                        // Check if the character is an opening bracket             if (s.charAt(i) == '(' || s.charAt(i) == '{' || s.charAt(i) == '[') {                 st.push(s.charAt(i));              }              else {                                // If it's a closing bracket, check if the stack is non-empty                 // and if the top of the stack is a matching opening bracket                 if (!st.empty() &&                      ((st.peek() == '(' && s.charAt(i) == ')') ||                      (st.peek() == '{' && s.charAt(i) == '}') ||                      (st.peek() == '[' && s.charAt(i) == ']'))) {                     st.pop();                  }                 else {                                        // Unmatched closing bracket                     return false;                  }             }         }                // If stack is empty, return true (balanced),          // otherwise false         return st.empty();     }      public static void main(String[] args) {         String s = "{([])}";         if (isBalanced(s))             System.out.println("true");         else             System.out.println("false");     } } 
Python
# Python program to check if parentheses are balanced  def isBalanced(s):        # Declare a stack to store the opening brackets     st = []     for i in range(len(s)):                  # Check if the character is an opening bracket         if s[i] == '(' or s[i] == '{' or s[i] == '[':             st.append(s[i])                  else:             # If it's a closing bracket, check if the stack is non-empty             # and if the top of the stack is a matching opening bracket             if st and ((st[-1] == '(' and s[i] == ')') or                         (st[-1] == '{' and s[i] == '}') or                        (st[-1] == '[' and s[i] == ']')):                  # Pop the matching opening bracket                 st.pop()             else:                 # Unmatched closing bracket                 return False      # If stack is empty, return True (balanced), otherwise False     return not st   if __name__ == "__main__": 	s = "{([])}" 	if isBalanced(s): 	    print("true") 	else: 		print("false") 
C#
// C# program to check if parentheses are balanced  using System; using System.Collections.Generic;   class GfG {      static bool isBalanced(string s) {                  // Declare a stack to store the opening brackets         Stack<char> st = new Stack<char>();         for (int i = 0; i < s.Length; i++) {                        // Check if the character is an opening bracket             if (s[i] == '(' || s[i] == '{' || s[i] == '[') {                 st.Push(s[i]);              }              else {                                // If it's a closing bracket, check if the stack is non-empty                 // and if the top of the stack is a matching opening bracket                 if (st.Count > 0 &&                      ((st.Peek() == '(' && s[i] == ')') ||                      (st.Peek() == '{' && s[i] == '}') ||                      (st.Peek() == '[' && s[i] == ']'))) {                     st.Pop();                  }                 else {                      // Unmatched closing bracket                     return false;                  }             }         }                // If stack is empty, return true (balanced),          // otherwise false         return st.Count == 0;     }      public static void Main(string[] args) {         string s = "{([])}";         if (isBalanced(s))             Console.WriteLine("true");         else             Console.WriteLine("false");     } } 
JavaScript
// Javascript program to check if parentheses are balanced function isBalanced(s) {      // Declare a stack to store the opening brackets     let st = [];     for (let i = 0; i < s.length; i++) {              // Check if the character is an opening bracket         if (s[i] === '(' || s[i] === '{' || s[i] === '[') {             st.push(s[i]);         } else {                      // If it's a closing bracket, check if the stack is non-empty             // and if the top of the stack is a matching opening bracket             if (st.length > 0 &&                 ((st[st.length - 1] === '(' && s[i] === ')') ||                  (st[st.length - 1] === '{' && s[i] === '}') ||                  (st[st.length - 1] === '[' && s[i] === ']'))) {                  // Pop the matching opening bracket                 st.pop();              } else {                   // Unmatched closing bracket                 return false;              }         }     }          // If stack is empty, return true (balanced), otherwise false     return st.length === 0; }  // Driver Code let s = "{([])}"; console.log(isBalanced(s) ? "true" : "false"); 

Output
true

[Expected Approach 2] Without using Stack - O(n) Time and O(1) Space

Instead of using actual Stack, we can uses the input string s itself to simulate stack behavior. We can use a top variable to keep track of the "top" of this virtual stack. This approach makes use of the existing string to avoid the need for additional memory to store stack elements.

Note: Strings are immutable in Java, Python, C#, and JavaScript. Therefore, we cannot modify them in place, making this approach unsuitable for these languages.

Step-by-Step approach:

  • Initialize top = -1 to represent an empty stack.
  • Traverse over the given string and for each character:
    • If top is -1 or the current character doesn’t match the top, increment top and store the character at s[top].
    • If the current character matches s[top], decrement top to remove the last unmatched opening parenthesis.
  • After processing, if top is -1, the string is balanced. Otherwise, it is unbalanced.
C++
// C++ program to check if parentheses are balanced #include <bits/stdc++.h> using namespace std;  // Check if characters match bool checkMatch(char c1, char c2){     if (c1 == '(' && c2 == ')') return true;     if (c1 == '[' && c2 == ']') return true;     if (c1 == '{' && c2 == '}') return true;     return false; }  // Check if parentheses are balanced bool isBalanced(string& s){        // Initialize top to -1     int top = -1;     for (int i = 0; i < s.length(); ++i){                // Push char if stack is empty or no match         if (top < 0 || !checkMatch(s[top], s[i])){             ++top;             s[top] = s[i];         }         else{                        // Pop from stack if match found             --top;         }     }        // Return true if stack is empty (balanced)     return top == -1; }  int main(){     string s = "{([])}";     cout << (isBalanced(s) ? "true" : "false") << endl;     return 0; } 
C
// C program to check if parentheses are balanced #include <stdio.h> #include <stdbool.h> #include <string.h>  // Check if characters match bool checkMatch(char c1, char c2){     if (c1 == '(' && c2 == ')') return true;     if (c1 == '[' && c2 == ']') return true;     if (c1 == '{' && c2 == '}') return true;     return false; }  // Check if parentheses are balanced bool isBalanced(char s[]){        // Initialize top as -1 (empty stack simulation)     int top = -1;     for (int i = 0; i < strlen(s); ++i){                // Push char if stack is empty or no match         if (top < 0 || !checkMatch(s[top], s[i])){             ++top;             s[top] = s[i];         }         else{                        // Pop from stack if match found             --top;         }     }        // Return true if stack is empty (balanced)     return top == -1; }  int main(){     char s[] = "{([])}";     printf("%s\n", isBalanced(s) ? "true" : "false");     return 0; } 

Output
true 

Next Article
Length of longest balanced parentheses prefix

K

kartik
Improve
Article Tags :
  • Strings
  • Stack
  • DSA
  • Amazon
  • Oracle
  • Walmart
  • Yatra.com
  • Snapdeal
  • Zoho
  • Hike
  • Wipro
  • Parentheses-Problems
Practice Tags :
  • Amazon
  • Hike
  • Oracle
  • Snapdeal
  • Walmart
  • Wipro
  • Yatra.com
  • Zoho
  • Stack
  • Strings

Similar Reads

    Mastering Bracket Problems for Competitive Programming
    Bracket problems in programming typically refer to problems that involve working with parentheses, and/or braces in expressions or sequences. It typically refers to problems related to the correct and balanced usage of parentheses, and braces in expressions or code. These problems often involve chec
    4 min read
    Check for balanced with only one type of brackets
    Given a string str of length N, consisting of '(' and ')' only, the task is to check whether it is balanced or not.Examples:Input: str = "((()))()()" Output: BalancedInput: str = "())((())" Output: Not Balanced Approach 1: Declare a Flag variable which denotes expression is balanced or not.Initialis
    9 min read
    Valid Parentheses in an Expression
    Given a string s representing an expression containing various types of brackets: {}, (), and [], the task is to determine whether the brackets in the expression are balanced or not. A balanced expression is one where every opening bracket has a corresponding closing bracket in the correct order.Exa
    8 min read
    Length of longest balanced parentheses prefix
    Given a string of open bracket '(' and closed bracket ')'. The task is to find the length of longest balanced prefix. Examples: Input : S = "((()())())((" Output : 10From index 0 to index 9, they are forming a balanced parentheses prefix.Input : S = "()(())((()"Output : 6The idea is take value of op
    9 min read
    Modify a numeric string to a balanced parentheses by replacements
    Given a numeric string S made up of characters '1', '2' and '3' only, the task is to replace characters with either an open bracket ( '(' ) or a closed bracket ( ')' ) such that the newly formed string becomes a balanced bracket sequence. Note: All occurrences of a character must be replaced by the
    10 min read
    Check if the bracket sequence can be balanced with at most one change in the position of a bracket
    Given an unbalanced bracket sequence as a string str, the task is to find whether the given string can be balanced by moving at most one bracket from its original place in the sequence to any other position.Examples: Input: str = ")(()" Output: Yes As by moving s[0] to the end will make it valid. "(
    6 min read
    Number of closing brackets needed to complete a regular bracket sequence
    Given an incomplete bracket sequence S. The task is to find the number of closing brackets ')' needed to make it a regular bracket sequence and print the complete bracket sequence. You are allowed to add the brackets only at the end of the given bracket sequence. If it is not possible to complete th
    7 min read
    Minimum number of Parentheses to be added to make it valid
    Given a string S of parentheses '(' or ')' where, 0\leq len(S)\leq 1000 . The task is to find a minimum number of parentheses '(' or ')' (at any positions) we must add to make the resulting parentheses string is valid. Examples: Input: str = "())" Output: 1 One '(' is required at beginning. Input: s
    9 min read
    Minimum bracket reversals to make an expression balanced
    Given an expression with only '}' and '{'. The expression may not be balanced. Find minimum number of bracket reversals to make the expression balanced.Examples: Input: s = "}{{}}{{{"Output: 3Explanation: We need to reverse minimum 3 brackets to make "{{{}}{}}". Input: s = "{{"Output: 1Explanation:
    15+ min read
    Find the number of valid parentheses expressions of given length
    Given a number n, the task is to find the number of valid parentheses expressions of that length. Examples : Input: 2Output: 1 Explanation: There is only possible valid expression of length 2, "()"Input: 4Output: 2 Explanation: Possible valid expression of length 4 are "(())" and "()()" Input: 6Outp
    11 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences