Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • Data Science
  • Data Science Projects
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • ML Projects
  • Deep Learning
  • NLP
  • Computer Vision
  • Artificial Intelligence
Open In App
Next Article:
Difference between ANN and BNN
Next article icon

Difference Between Artificial Intelligence vs Machine Learning vs Deep Learning

Last Updated : 07 Aug, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Artificial Intelligence is basically the mechanism to incorporate human intelligence into machines through a set of rules(algorithm). AI is a combination of two words: “Artificial” meaning something made by humans or non-natural things and “Intelligence” meaning the ability to understand or think accordingly. Another definition could be that “AI is basically the study of training your machine(computers) to mimic a human brain and its thinking capabilities”. 

AI focuses on 3 major aspects(skills): learning, reasoning, and self-correction to obtain the maximum efficiency possible. 

Machine Learning:

 Machine Learning is basically the study/process which provides the system(computer) to learn automatically on its own through experiences it had and improve accordingly without being explicitly programmed. ML is an application or subset of AI. ML focuses on the development of programs so that it can access data to use it for itself. The entire process makes observations on data to identify the possible patterns being formed and make better future decisions as per the examples provided to them. The major aim of ML is to allow the systems to learn by themselves through experience without any kind of human intervention or assistance.

 Deep Learning:

 Deep Learning is basically a sub-part of the broader family of Machine Learning which makes use of Neural Networks(similar to the neurons working in our brain) to mimic human brain-like behavior. DL algorithms focus on information processing patterns mechanism to possibly identify the patterns just like our human brain does and classifies the information accordingly. DL works on larger sets of data when compared to ML and the prediction mechanism is self-administered by machines. 

Below is a table of differences between Artificial Intelligence, Machine Learning and Deep Learning: 

Artificial Intelligence Machine Learning Deep Learning
AI stands for Artificial Intelligence, and is basically the study/process which enables machines to mimic human behaviour through particular algorithm. ML stands for Machine Learning, and is the study that uses statistical methods enabling machines to improve with experience. DL stands for Deep Learning, and is the study that makes use of Neural Networks(similar to neurons present in human brain) to imitate functionality just like a human brain.
AI is the broader family consisting of ML and DL as it’s components. ML is the subset of AI. DL is the subset of ML.
AI is a computer algorithm which exhibits intelligence through decision making. ML is an AI algorithm which allows system to learn from data. DL is a ML algorithm that uses deep(more than one layer) neural networks to analyze data and provide output accordingly.
Search Trees and much complex math is involved in AI. If you have a clear idea about the logic(math) involved in behind and you can visualize the complex functionalities like K-Mean, Support Vector Machines, etc., then it defines the ML aspect. If you are clear about the math involved in it but don’t have idea about the features, so you break the complex functionalities into linear/lower dimension features by adding more layers, then it defines the DL aspect.
The aim is to basically increase chances of success and not accuracy. The aim is to increase accuracy not caring much about the success ratio. It attains the highest rank in terms of accuracy when it is trained with large amount of data.
Three broad categories/types Of AI are: Artificial Narrow Intelligence (ANI), Artificial General Intelligence (AGI) and Artificial Super Intelligence (ASI) Three broad categories/types Of ML are: Supervised Learning, Unsupervised Learning and Reinforcement Learning DL can be considered as neural networks with a large number of parameters layers lying in one of the four fundamental network architectures: Unsupervised Pre-trained Networks, Convolutional Neural Networks, Recurrent Neural Networks and Recursive Neural Networks
The efficiency Of AI is basically the efficiency provided by ML and DL respectively. Less efficient than DL as it can’t work for longer dimensions or higher amount of data. More powerful than ML as it can easily work for larger sets of data.
Examples of AI applications include: Google’s AI-Powered Predictions, Ridesharing Apps Like Uber and Lyft, Commercial Flights Use an AI Autopilot, etc. Examples of ML applications include: Virtual Personal Assistants: Siri, Alexa, Google, etc., Email Spam and Malware Filtering. Examples of DL applications include: Sentiment based news aggregation, Image analysis and caption generation, etc.
AI refers to the broad field of computer science that focuses on creating intelligent machines that can perform tasks that would normally require human intelligence, such as reasoning, perception, and decision-making. ML is a subset of AI that focuses on developing algorithms that can learn from data and improve their performance over time without being explicitly programmed.  DL is a subset of ML that focuses on developing deep neural networks that can automatically learn and extract features from data.
AI can be further broken down into various subfields such as robotics, natural language processing, computer vision, expert systems, and more. ML algorithms can be categorized as supervised, unsupervised, or reinforcement learning. In supervised learning, the algorithm is trained on labeled data, where the desired output is known. In unsupervised learning, the algorithm is trained on unlabeled data, where the desired output is unknown.  DL algorithms are inspired by the structure and function of the human brain, and they are particularly well-suited to tasks such as image and speech recognition. 
AI systems can be rule-based, knowledge-based, or data-driven. In reinforcement learning, the algorithm learns by trial and error, receiving feedback in the form of rewards or punishments.  DL networks consist of multiple layers of interconnected neurons that process data in a hierarchical manner, allowing them to learn increasingly complex representations of the data.

AI vs. Machine Learning vs. Deep Learning Examples: 

Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would normally require human intelligence. 

Some examples of AI include:

There are numerous examples of AI applications across various industries. Here are some common examples:

  •  Speech recognition: speech recognition systems use deep learning algorithms to recognize and classify images and speech. These systems are used in a variety of applications, such as self-driving cars, security systems, and medical imaging.
  • Personalized recommendations: E-commerce sites and streaming services like Amazon and Netflix use AI algorithms to analyze users’ browsing and viewing history to recommend products and content that they are likely to be interested in.
  • Predictive maintenance: AI-powered predictive maintenance systems analyze data from sensors and other sources to predict when equipment is likely to fail, helping to reduce downtime and maintenance costs.
  • Medical diagnosis: AI-powered medical diagnosis systems analyze medical images and other patient data to help doctors make more accurate diagnoses and treatment plans.
  • Autonomous vehicles: Self-driving cars and other autonomous vehicles use AI algorithms and sensors to analyze their environment and make decisions about speed, direction, and other factors.
  • Virtual Personal Assistants (VPA) like Siri or Alexa – these use natural language processing to understand and respond to user requests, such as playing music, setting reminders, and answering questions.
  • Autonomous vehicles – self-driving cars use AI to analyze sensor data, such as cameras and lidar, to make decisions about navigation, obstacle avoidance, and route planning.
  • Fraud detection – financial institutions use AI to analyze transactions and detect patterns that are indicative of fraud, such as unusual spending patterns or transactions from unfamiliar locations.
  • Image recognition – AI is used in applications such as photo organization, security systems, and autonomous robots to identify objects, people, and scenes in images.
  • Natural language processing – AI is used in chatbots and language translation systems to understand and generate human-like text.
  • Predictive analytics – AI is used in industries such as healthcare and marketing to analyze large amounts of data and make predictions about future events, such as disease outbreaks or consumer behavior.
  • Game-playing AI – AI algorithms have been developed to play games such as chess, Go, and poker at a superhuman level, by analyzing game data and making predictions about the outcomes of moves.

Examples of Machine Learning:

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that involves the use of algorithms and statistical models to allow a computer system to “learn” from data and improve its performance over time, without being explicitly programmed to do so.

 Here are some examples of Machine Learning:

  • Image recognition: Machine learning algorithms are used in image recognition systems to classify images based on their contents. These systems are used in a variety of applications, such as self-driving cars, security systems, and medical imaging.
  • Speech recognition: Machine learning algorithms are used in speech recognition systems to transcribe speech and identify the words spoken. These systems are used in virtual assistants like Siri and Alexa, as well as in call centers and other applications.
  • Natural language processing (NLP): Machine learning algorithms are used in NLP systems to understand and generate human language. These systems are used in chatbots, virtual assistants, and other applications that involve natural language interactions.
  • Recommendation systems: Machine learning algorithms are used in recommendation systems to analyze user data and recommend products or services that are likely to be of interest. These systems are used in e-commerce sites, streaming services, and other applications.
  • Sentiment analysis: Machine learning algorithms are used in sentiment analysis systems to classify the sentiment of text or speech as positive, negative, or neutral. These systems are used in social media monitoring and other applications.
  • Predictive maintenance: Machine learning algorithms are used in predictive maintenance systems to analyze data from sensors and other sources to predict when equipment is likely to fail, helping to reduce downtime and maintenance costs.
  • Spam filters in email – ML algorithms analyze email content and metadata to identify and flag messages that are likely to be spam.
  • Recommendation systems – ML algorithms are used in e-commerce websites and streaming services to make personalized recommendations to users based on their browsing and purchase history.
  • Predictive maintenance – ML algorithms are used in manufacturing to predict when machinery is likely to fail, allowing for proactive maintenance and reducing downtime.
  • Credit risk assessment – ML algorithms are used by financial institutions to assess the credit risk of loan applicants, by analyzing data such as their income, employment history, and credit score.
  • Customer segmentation – ML algorithms are used in marketing to segment customers into different groups based on their characteristics and behavior, allowing for targeted advertising and promotions.
  • Fraud detection – ML algorithms are used in financial transactions to detect patterns of behavior that are indicative of fraud, such as unusual spending patterns or transactions from unfamiliar locations.
  • Speech recognition – ML algorithms are used to transcribe spoken words into text, allowing for voice-controlled interfaces and dictation software.

Examples of Deep Learning:

Deep Learning is a type of Machine Learning that uses artificial neural networks with multiple layers to learn and make decisions.

 Here are some examples of Deep Learning:

  • Image and video recognition: Deep learning algorithms are used in image and video recognition systems to classify and analyze visual data. These systems are used in self-driving cars, security systems, and medical imaging.
  • Generative models: Deep learning algorithms are used in generative models to create new content based on existing data. These systems are used in image and video generation, text generation, and other applications.
  • Autonomous vehicles: Deep learning algorithms are used in self-driving cars and other autonomous vehicles to analyze sensor data and make decisions about speed, direction, and other factors.
  • Image classification – Deep Learning algorithms are used to recognize objects and scenes in images, such as recognizing faces in photos or identifying items in an image for an e-commerce website.
  • Speech recognition – Deep Learning algorithms are used to transcribe spoken words into text, allowing for voice-controlled interfaces and dictation software.
  • Natural language processing – Deep Learning algorithms are used for tasks such as sentiment analysis, language translation, and text generation.
  • Recommender systems – Deep Learning algorithms are used in recommendation systems to make personalized recommendations based on users’ behavior and preferences.
  • Fraud detection – Deep Learning algorithms are used in financial transactions to detect patterns of behavior that are indicative of fraud, such as unusual spending patterns or transactions from unfamiliar locations.
  • Game-playing AI – Deep Learning algorithms have been used to develop game-playing AI that can compete at a superhuman level, such as the AlphaGo AI that defeated the world champion in the game of Go.
  • Time series forecasting – Deep Learning algorithms are used to forecast future values in time series data, such as stock prices, energy consumption, and weather patterns.

AI vs. ML vs. DL works: Is There a Difference?

Working in AI is not the same as being an ML or DL engineer. Here’s how you can tell those careers apart and decide which one is the right call for you. 

What Does an AI Engineer Do?

 

An AI Engineer is a professional who designs, develops, and implements artificial intelligence (AI) systems and solutions. Here are some of the key responsibilities and tasks of an AI Engineer:

  • Design and development of AI algorithms: AI Engineers design, develop, and implement AI algorithms, such as decision trees, random forests, and neural networks, to solve specific problems.
  • Data analysis: AI Engineers analyze and interpret data, using statistical and mathematical techniques, to identify patterns and relationships that can be used to train AI models.
  • Model training and evaluation: AI Engineers train AI models on large datasets, evaluate their performance, and adjust the parameters of the algorithms to improve accuracy.
  • Deployment and maintenance: AI Engineers deploy AI models into production environments and maintain and update them over time.
  • Collaboration with stakeholders: AI Engineers work closely with stakeholders, including data scientists, software engineers, and business leaders, to understand their requirements and ensure that the AI solutions meet their needs.
  • Research and innovation: AI Engineers stay current with the latest advancements in AI and contribute to the research and development of new AI techniques and algorithms.
  • Communication: AI Engineers communicate the results of their work, including the performance of AI models and their impact on business outcomes, to stakeholders.

An AI Engineer must have a strong background in computer science, mathematics, and statistics, as well as experience in developing AI algorithms and solutions. They should also be familiar with programming languages, such as Python and R.

What Does a Machine Learning Engineer Do?

 

A Machine Learning Engineer is a professional who designs, develops, and implements machine learning (ML) systems and solutions. Here are some of the key responsibilities and tasks of a Machine Learning Engineer:

  • Design and development of ML algorithms: Machine Learning Engineers design, develop, and implement ML algorithms, such as decision trees, random forests, and neural networks, to solve specific problems.
  • Data analysis: Machine Learning Engineers analyze and interpret data, using statistical and mathematical techniques, to identify patterns and relationships that can be used to train ML models.
  • Model training and evaluation: Machine Learning Engineers train ML models on large datasets, evaluate their performance, and adjust the parameters of the algorithms to improve accuracy.
  • Deployment and maintenance: Machine Learning Engineers deploy ML models into production environments and maintain and update them over time.
  • Collaboration with stakeholders: Machine Learning Engineers work closely with stakeholders, including data scientists, software engineers, and business leaders, to understand their requirements and ensure that the ML solutions meet their needs.
  • Research and innovation: Machine Learning Engineers stay current with the latest advancements in ML and contribute to the research and development of new ML techniques and algorithms.
  • Communication: Machine Learning Engineers communicate the results of their work, including the performance of ML models and their impact on business outcomes, to stakeholders.

A Machine Learning Engineer must have a strong background in computer science, mathematics, and statistics, as well as experience in developing ML algorithms and solutions. They should also be familiar with programming languages, such as Python and R, and have experience working with ML frameworks and tools.

What Does a Deep Learning Engineer Do?

 

A Deep Learning Engineer is a professional who designs, develops, and implements deep learning (DL) systems and solutions. Here are some of the key responsibilities and tasks of a Deep Learning Engineer:

  • Design and development of DL algorithms: Deep Learning Engineers design, develop, and implement deep neural networks and other DL algorithms to solve specific problems.
  • Data analysis: Deep Learning Engineers analyze and interpret large datasets, using statistical and mathematical techniques, to identify patterns and relationships that can be used to train DL models.
  • Model training and evaluation: Deep Learning Engineers train DL models on massive datasets, evaluate their performance, and adjust the parameters of the algorithms to improve accuracy.
  • Deployment and maintenance: Deep Learning Engineers deploy DL models into production environments and maintain and update them over time.
  • Collaboration with stakeholders: Deep Learning Engineers work closely with stakeholders, including data scientists, software engineers, and business leaders, to understand their requirements and ensure that the DL solutions meet their needs.
  • Research and innovation: Deep Learning Engineers stay current with the latest advancements in DL and contribute to the research and development of new DL techniques and algorithms.
  • Communication: Deep Learning Engineers communicate the results of their work, including the performance of DL models and their impact on business outcomes, to stakeholders.


Next Article
Difference between ANN and BNN
author
maansi_gupta
Improve
Article Tags :
  • Artificial Intelligence

Similar Reads

  • Deep Learning Tutorial
    Deep Learning tutorial covers the basics and more advanced topics, making it perfect for beginners and those with experience. Whether you're just starting or looking to expand your knowledge, this guide makes it easy to learn about the different technologies of Deep Learning. Deep Learning is a bran
    5 min read
  • Introduction to Deep Learning

    • Introduction to Deep Learning
      Deep Learning is transforming the way machines understand, learn, and interact with complex data. Deep learning mimics neural networks of the human brain, it enables computers to autonomously uncover patterns and make informed decisions from vast amounts of unstructured data. Deep Learning leverages
      8 min read

    • Difference Between Artificial Intelligence vs Machine Learning vs Deep Learning
      Artificial Intelligence is basically the mechanism to incorporate human intelligence into machines through a set of rules(algorithm). AI is a combination of two words: "Artificial" meaning something made by humans or non-natural things and "Intelligence" meaning the ability to understand or think ac
      14 min read

    Basic Neural Network

    • Difference between ANN and BNN
      Do you ever think of what it's like to build anything like a brain, how these things work, or what they do? Let us look at how nodes communicate with neurons and what are some differences between artificial and biological neural networks. 1. Artificial Neural Network: Artificial Neural Network (ANN)
      3 min read

    • Single Layer Perceptron in TensorFlow
      Single Layer Perceptron is inspired by biological neurons and their ability to process information. To understand the SLP we first need to break down the workings of a single artificial neuron which is the fundamental building block of neural networks. An artificial neuron is a simplified computatio
      4 min read

    • Multi-Layer Perceptron Learning in Tensorflow
      Multi-Layer Perceptron (MLP) is an artificial neural network widely used for solving classification and regression tasks. MLP consists of fully connected dense layers that transform input data from one dimension to another. It is called "multi-layer" because it contains an input layer, one or more h
      9 min read

    • Deep Neural net with forward and back propagation from scratch - Python
      This article aims to implement a deep neural network from scratch. We will implement a deep neural network containing two input layers, a hidden layer with four units and one output layer. The implementation will go from scratch and the following steps will be implemented. Algorithm:1. Loading and v
      6 min read

    • Understanding Multi-Layer Feed Forward Networks
      Let's understand how errors are calculated and weights are updated in backpropagation networks(BPNs). Consider the following network in the below figure. The network in the above figure is a simple multi-layer feed-forward network or backpropagation network. It contains three layers, the input layer
      7 min read

    • List of Deep Learning Layers
      Deep learning (DL) is characterized by the use of neural networks with multiple layers to model and solve complex problems. Each layer in the neural network plays a unique role in the process of converting input data into meaningful and insightful outputs. The article explores the layers that are us
      7 min read

    Activation Functions

    • Activation Functions
      To put it in simple terms, an artificial neuron calculates the 'weighted sum' of its inputs and adds a bias, as shown in the figure below by the net input. Mathematically, [Tex]\text{Net Input} =\sum \text{(Weight} \times \text{Input)+Bias}[/Tex] Now the value of net input can be any anything from -
      3 min read

    • Types Of Activation Function in ANN
      The biological neural network has been modeled in the form of Artificial Neural Networks with artificial neurons simulating the function of a biological neuron. The artificial neuron is depicted in the below picture: Each neuron consists of three major components:  A set of 'i' synapses having weigh
      4 min read

    • Activation Functions in Pytorch
      In this article, we will Understand PyTorch Activation Functions. What is an activation function and why to use them?Activation functions are the building blocks of Pytorch. Before coming to types of activation function, let us first understand the working of neurons in the human brain. In the Artif
      5 min read

    • Understanding Activation Functions in Depth
      In artificial neural networks, the activation function of a neuron determines its output for a given input. This output serves as the input for subsequent neurons in the network, continuing the process until the network solves the original problem. Consider a binary classification problem, where the
      6 min read

    Artificial Neural Network

    • Artificial Neural Networks and its Applications
      As you read this article, which organ in your body is thinking about it? It's the brain, of course! But do you know how the brain works? Well, it has neurons or nerve cells that are the primary units of both the brain and the nervous system. These neurons receive sensory input from the outside world
      9 min read

    • Gradient Descent Optimization in Tensorflow
      Gradient descent is an optimization algorithm used to find the values of parameters (coefficients) of a function (f) that minimizes a cost function. In other words, gradient descent is an iterative algorithm that helps to find the optimal solution to a given problem. In this blog, we will discuss gr
      15+ min read

    • Choose Optimal Number of Epochs to Train a Neural Network in Keras
      One of the critical issues while training a neural network on the sample data is Overfitting. When the number of epochs used to train a neural network model is more than necessary, the training model learns patterns that are specific to sample data to a great extent. This makes the model incapable t
      6 min read

    Classification

    • Python | Classify Handwritten Digits with Tensorflow
      Classifying handwritten digits is the basic problem of the machine learning and can be solved in many ways here we will implement them by using TensorFlowUsing a Linear Classifier Algorithm with tf.contrib.learn linear classifier achieves the classification of handwritten digits by making a choice b
      4 min read

    • Train a Deep Learning Model With Pytorch
      Neural Network is a type of machine learning model inspired by the structure and function of human brain. It consists of layers of interconnected nodes called neurons which process and transmit information. Neural networks are particularly well-suited for tasks such as image and speech recognition,
      6 min read

    Regression

    • Linear Regression using PyTorch
      Linear Regression is a very commonly used statistical method that allows us to determine and study the relationship between two continuous variables. The various properties of linear regression and its Python implementation have been covered in this article previously. Now, we shall find out how to
      4 min read

    • Linear Regression Using Tensorflow
      We will briefly summarize Linear Regression before implementing it using TensorFlow. Since we will not get into the details of either Linear Regression or Tensorflow, please read the following articles for more details: Linear Regression (Python Implementation)Introduction to TensorFlowIntroduction
      6 min read

    Hyperparameter tuning

    • Hyperparameter tuning
      Machine Learning model is defined as a mathematical model with several parameters that need to be learned from the data. By training a model with existing data we can fit the model parameters. However there is another kind of parameter known as hyperparameters which cannot be directly learned from t
      8 min read

    Introduction to Convolution Neural Network

    • Introduction to Convolution Neural Network
      Convolutional Neural Network (CNN) is an advanced version of artificial neural networks (ANNs), primarily designed to extract features from grid-like matrix datasets. This is particularly useful for visual datasets such as images or videos, where data patterns play a crucial role. CNNs are widely us
      8 min read

    • Digital Image Processing Basics
      Digital Image Processing means processing digital image by means of a digital computer. We can also say that it is a use of computer algorithms, in order to get enhanced image either to extract some useful information. Digital image processing is the use of algorithms and mathematical models to proc
      7 min read

    • Difference between Image Processing and Computer Vision
      Image processing and Computer Vision both are very exciting field of Computer Science. Computer Vision: In Computer Vision, computers or machines are made to gain high-level understanding from the input digital images or videos with the purpose of automating tasks that the human visual system can do
      2 min read

    • CNN | Introduction to Pooling Layer
      Pooling layer is used in CNNs to reduce the spatial dimensions (width and height) of the input feature maps while retaining the most important information. It involves sliding a two-dimensional filter over each channel of a feature map and summarizing the features within the region covered by the fi
      5 min read

    • CIFAR-10 Image Classification in TensorFlow
      Prerequisites:Image ClassificationConvolution Neural Networks including basic pooling, convolution layers with normalization in neural networks, and dropout.Data Augmentation.Neural Networks.Numpy arrays.In this article, we are going to discuss how to classify images using TensorFlow. Image Classifi
      8 min read

    • Implementation of a CNN based Image Classifier using PyTorch
      Introduction: Introduced in the 1980s by Yann LeCun, Convolution Neural Networks(also called CNNs or ConvNets) have come a long way. From being employed for simple digit classification tasks, CNN-based architectures are being used very profoundly over much Deep Learning and Computer Vision-related t
      9 min read

    • Convolutional Neural Network (CNN) Architectures
      Convolutional Neural Network(CNN) is a neural network architecture in Deep Learning, used to recognize the pattern from structured arrays. However, over many years, CNN architectures have evolved. Many variants of the fundamental CNN Architecture This been developed, leading to amazing advances in t
      11 min read

    • Object Detection vs Object Recognition vs Image Segmentation
      Object Recognition: Object recognition is the technique of identifying the object present in images and videos. It is one of the most important applications of machine learning and deep learning. The goal of this field is to teach machines to understand (recognize) the content of an image just like
      5 min read

    • YOLO v2 - Object Detection
      In terms of speed, YOLO is one of the best models in object recognition, able to recognize objects and process frames at the rate up to 150 FPS for small networks. However, In terms of accuracy mAP, YOLO was not the state of the art model but has fairly good Mean average Precision (mAP) of 63% when
      6 min read

    Recurrent Neural Network

    • Natural Language Processing (NLP) Tutorial
      Natural Language Processing (NLP) is the branch of Artificial Intelligence (AI) that gives the ability to machine understand and process human languages. Human languages can be in the form of text or audio format. Applications of NLPThe applications of Natural Language Processing are as follows: Voi
      5 min read

    • Introduction to NLTK: Tokenization, Stemming, Lemmatization, POS Tagging
      Natural Language Toolkit (NLTK) is one of the largest Python libraries for performing various Natural Language Processing tasks. From rudimentary tasks such as text pre-processing to tasks like vectorized representation of text - NLTK's API has covered everything. In this article, we will accustom o
      5 min read

    • Word Embeddings in NLP
      Word Embeddings are numeric representations of words in a lower-dimensional space, capturing semantic and syntactic information. They play a vital role in Natural Language Processing (NLP) tasks. This article explores traditional and neural approaches, such as TF-IDF, Word2Vec, and GloVe, offering i
      15+ min read

    • Introduction to Recurrent Neural Networks
      Recurrent Neural Networks (RNNs) work a bit different from regular neural networks. In neural network the information flows in one direction from input to output. However in RNN information is fed back into the system after each step. Think of it like reading a sentence, when you're trying to predic
      12 min read

    • Recurrent Neural Networks Explanation
      Today, different Machine Learning techniques are used to handle different types of data. One of the most difficult types of data to handle and the forecast is sequential data. Sequential data is different from other types of data in the sense that while all the features of a typical dataset can be a
      8 min read

    • Sentiment Analysis with an Recurrent Neural Networks (RNN)
      Recurrent Neural Networks (RNNs) excel in sequence tasks such as sentiment analysis due to their ability to capture context from sequential data. In this article we will be apply RNNs to analyze the sentiment of customer reviews from Swiggy food delivery platform. The goal is to classify reviews as
      3 min read

    • Short term Memory
      In the wider community of neurologists and those who are researching the brain, It is agreed that two temporarily distinct processes contribute to the acquisition and expression of brain functions. These variations can result in long-lasting alterations in neuron operations, for instance through act
      5 min read

    • What is LSTM - Long Short Term Memory?
      Long Short-Term Memory (LSTM) is an enhanced version of the Recurrent Neural Network (RNN) designed by Hochreiter & Schmidhuber. LSTMs can capture long-term dependencies in sequential data making them ideal for tasks like language translation, speech recognition and time series forecasting. Unli
      7 min read

    • Long Short Term Memory Networks Explanation
      Prerequisites: Recurrent Neural Networks To solve the problem of Vanishing and Exploding Gradients in a Deep Recurrent Neural Network, many variations were developed. One of the most famous of them is the Long Short Term Memory Network(LSTM). In concept, an LSTM recurrent unit tries to "remember" al
      7 min read

    • LSTM - Derivation of Back propagation through time
      Long Short-Term Memory (LSTM) are a type of neural network designed to handle long-term dependencies by handling the vanishing gradient problem. One of the fundamental techniques used to train LSTMs is Backpropagation Through Time (BPTT) where we have sequential data. In this article we summarize ho
      4 min read

    • Text Generation using Recurrent Long Short Term Memory Network
      LSTMs are a type of neural network that are well-suited for tasks involving sequential data such as text generation. They are particularly useful because they can remember long-term dependencies in the data which is crucial when dealing with text that often has context that spans over multiple words
      6 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences