# Visualising the Training set results # Install ElemStatLearn if not present # in the packages using(without hashtag) # install.packages('ElemStatLearn') library(ElemStatLearn) set = training_set # Building a grid of Age Column(X1) # and Estimated Salary(X2) Column X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) grid_set = expand.grid(X1, X2) # Give name to the columns of matrix colnames(grid_set) = c('Age', 'EstimatedSalary') # Predicting the values and plotting them # to grid and labelling the axes y_grid = predict(classifier, newdata = grid_set, type = 'class') plot(set[, -3], main = 'Decision Tree Classification (Training set)', xlab = 'Age', ylab = 'Estimated Salary', xlim = range(X1), ylim = range(X2)) contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato')) points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))