P(n) = (cos x + i.sinx)n = cos(nx) + i.sin(nx) ⇢ (1)
Step 1: For n = 1,
(cos x + i sin x)1 = cos(1x) + i sin(1x) = cos(x) + i sin(x),
Which is true. thus, P(n) is true for n = 1.
Step 2: Assume P(k) is true
(cos x + i.sin x)k = cos(kx) + i.sin(kx) ⇢ (2)
Step 3: Now we have to prove P(k+1) is true.
(cos x + i.sin x)k+1 = (cos x + i.sin x)k(cos x + i sin x)
= [cos (kx) + i.sin (kx)].[cos x + i.sin x] ⇢ [Using (1)]
= cos (kx).cos x − sin (kx).sin x + i [sin (kx).cos x + cos (kx).sin x)
= cos {(k+1)x} + i.sin {(k+1)x}
= cos {(k+1)x} + i.sin {(k+1)x}
Thus, P(k+1) is also true and by the principle of mathematical induction P(n) is true.
Let, z = √3 + i comparing with z = x + iy
x = √3, y = 1
Also, z = r(cos θ + i sin θ)
r = √(x2 + y2) = √[(√3)2 + 12]
r = 2
θ = tan-1(y/x) = tan-1(1/√3) = π/6
z = r(cos θ + i sin θ)
⇒ z = 2(cos π/6 +i.sin π/6)
⇒ z200 = [2(cos π/6 +i.sin π/6)]200
⇒ z200 = [2]200[(cos π/6 +i.sin π/6)]200
Using DeMoivre’s Theorem
z200 = [2]200[(cos 200π/6 +i.sin 200π/6)]
⇒ z200 = [2]200[-1/2 - i√3/2]
⇒ z200 = [2]200[1/2 + i√3/2]
Let, z = 1 + i comparing with z = x + iy
x = 1, y = 1
Also, z = r(cos θ + i sin θ)
r = √(x2 + y2) = √[12 + 12]
r = √2
θ = tan-1(y/x) = tan-1(1/1) = π/4
z = r(cos θ + i sin θ)
⇒ z = √2(cos π/4 +i.sin π/4)
z100 = [2(cos π/4 +i.sin π/4)]100
⇒ z100 = [2]50[(cos π/4 +i.sin π/4)]100
Using DeMoivre’s Theorem
z100 = [2]50[(cos 100π/4 +i.sin 100π/4)]
⇒ z100 = [2]50[-1 + i.0]
⇒ z100 = [2]50
Let, z = 3 + 3i comparing with z = x + iy
x = 3, y = 3
Also, z = r(cos θ + i sin θ)
⇒ r = √(x2 + y2) = √[32 + 32]
⇒ r = 2√3
θ = tan-1(y/x) = tan-1(3/3) = π/4
z = r(cos θ + i sin θ)
⇒ z = 3√2(cos π/4 +i.sin π/4)
z40 = [3√2(cos π/4 +i.sin π/4)]140
⇒ z40 = [3√2]40[(cos π/4 +i.sin π/4)]40
Using DeMoivre’s Theorem
z40 = [3√2]40[(cos 40π/4 +i.sin 40π/4)]
⇒ z40 = [3√2]40[1 + i.0]
⇒ z40 = [3√2]40
[(cos x + i.sin x)/(sin x + i.cos x)]8
= (cos x + i.sin x)8/i8(cos x - i.sin x)8
Using De Movire's Theorem and taking the value of i8 = 1
= (cos 8x + i.sin 8x)/(cos 8x - i.sin 8x)
Rationalising we get,
= (cos 8x + i.sin 8x)2 / (cos2 8x – i2.sin2 8x)
= cos 16x + i.sin 16x Since, [(cos2 8x – i2.sin2 8x) = (cos2 8x + sin2 8x) = 1]