Denormalization in Databases Last Updated : 24 Jan, 2025 Comments Improve Suggest changes Like Article Like Report Denormalization focuses on combining multiple tables to make queries execute quickly. It adds redundancies in the database though. In this article, we’ll explore Denormalization and how it impacts database design. This method can help us to avoid costly joins in a relational database made during normalization.What is Denormalization in Databases?Denormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean 'reversing normalization' or 'not to normalize'. It is an optimization technique that is applied after normalization.Basically, The process of taking a normalized schema and making it non-normalized is called denormalization, and designers use it to tune the performance of systems to support time-critical operations.In a traditional normalized database, we store data in separate logical tables and attempt to minimize redundant data. We may strive to have only one copy of each piece of data in a database.For example, in a normalized database, we might have a Courses table and a Teachers table. Each entry in Courses would store the teacherID for a Course but not the teacherName. When we need to retrieve a list of all Courses with the Teacher's name, we would do a join between these two tables. In some ways, this is great; if a teacher changes his or her name, we only have to update the name in one place. The drawback is that if tables are large, we may spend an unnecessarily long time doing joins on tables. Denormalization, then, strikes a different compromise. Under denormalization, we decide that we're okay with some redundancy and some extra effort to update the database in order to get the efficiency advantages of fewer joins. Step 1: Unnormalized TableThis is the starting point where all the data is stored in a single table. What’s wrong with it?Redundancy: For example, "Alice" and "Math" are repeated multiple times. Similarly, "Mr. Smith" is stored twice for the same class.Update Anomalies: If "Mr. Smith" changes to "Mr. Brown," we have to update multiple rows. Missing one row could lead to inconsistencies.Inefficient Storage: Repeated information takes up unnecessary space.Step 2: Normalized StructureTo eliminate redundancy and avoid anomalies, we split the data into smaller, related tables. This process is called normalization. Each table now focuses on a specific aspect, such as students, classes, or subjects. Why is this better?No Redundancy: "Mr. Smith" appears only once in the Classes Table, even if multiple subjects are associated with the class.Easier Updates: If "Mr. Smith" changes to "Mr. Brown," you only update the Classes Table, and it automatically reflects everywhere.Efficient Storage: Repeated data is eliminated, saving space.Step 3: Denormalized TableIn some cases, normalization can make querying complex and slow because you need to join multiple tables to get the required information. To optimize performance, we can denormalize the data by combining related tables into a single table. What’s happening here?All related information (student name, class name, teacher, and subject) is stored in a single table.This simplifies querying because you don’t need to join multiple tables.How is Denormalization Different From Normalization ?Normalization and Denormalization both are the method which use in database but it works opposite to each other. One side normalization is used for reduce or removing the redundancy which means there will be no duplicate data or entries in the same table and also optimizes for data integrity and efficient storage, while Denormalization is used for add the redundancy into normalized table so that enhance the functionality and minimize the running time of database queries (like joins operation ) and optimizes for performance and query simplicity.In a system that demands scalability, like that of any major tech company, we almost always use elements of both normalized and denormalized databases.Advantages of DenormalizationImproved Query Performance: Denormalization can improve query performance by reducing the number of joins required to retrieve data.Reduced Complexity: By combining related data into fewer tables, denormalization can simplify the database schema and make it easier to manage.Easier Maintenance and Updates: Denormalization can make it easier to update and maintain the database by reducing the number of tables.Improved Read Performance: Denormalization can improve read performance by making it easier to access data.Better Scalability: Denormalization can improve the scalability of a database system by reducing the number of tables and improving the overall performance.Disadvantages of DenormalizationReduced Data Integrity: By adding redundant data, denormalization can reduce data integrity and increase the risk of inconsistencies.Increased Complexity: While denormalization can simplify the database schema in some cases, it can also increase complexity by introducing redundant data.Increased Storage Requirements: By adding redundant data, denormalization can increase storage requirements and increase the cost of maintaining the database.Increased Update and Maintenance Complexity: Denormalization can increase the complexity of updating and maintaining the database by introducing redundant data.Limited Flexibility: Denormalization can reduce the flexibility of a database system by introducing redundant data and making it harder to modify the schema. Conclusion Denormalization is the method which is used to add the redundancy so that execute the query quickly. It is used for decrease the number of tables so that execute the query quickly (like joins operation ). Denormalization improve the storage efficiency so that improve the query performance (like when read heavy systems ). Denormalization has many benefits in some situations but it requires management so that avoid data inconsistencies problems. Comment More infoAdvertise with us Next Article ACID Properties in DBMS S Swarnakamal Dhyawala Follow Improve Article Tags : Misc DBMS DBMS-Normalization Practice Tags : Misc Similar Reads DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa 7 min read Basic of DBMSIntroduction of DBMS (Database Management System)A Database Management System (DBMS) is a software solution designed to efficiently manage, organize, and retrieve data in a structured manner. It serves as a critical component in modern computing, enabling organizations to store, manipulate, and secure their data effectively. From small application 8 min read History of DBMSThe first database management systems (DBMS) were created to handle complex data for businesses in the 1960s. These systems included Charles Bachman's Integrated Data Store (IDS) and IBM's Information Management System (IMS). Databases were first organized into tree-like structures using hierarchica 7 min read DBMS Architecture 1-level, 2-Level, 3-LevelA database stores important information that needs to be accessed quickly and securely. Choosing the right DBMS architecture is essential for organizing, managing, and maintaining the data efficiently. It defines how users interact with the database to read, write, or update information. The schema 7 min read Difference between File System and DBMSA file system and a DBMS are two kinds of data management systems that are used in different capacities and possess different characteristics. A File System is a way of organizing files into groups and folders and then storing them in a storage device. It provides the media that stores data as well 6 min read Entity Relationship ModelIntroduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri 10 min read Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit 5 min read Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization, and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to 4 min read Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles 14 min read Types of Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)In the context of a relational database, Keys are one of the basic requirements of a relational database model. keys are fundamental components that ensure data integrity, uniqueness, and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set 8 min read Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S 7 min read Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine, or build on them. In this article, let's d 7 min read Relational ModelIntroduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr 9 min read SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. Joins allow efficient data retrieval, which is essential for generating meaningful observations and solving complex business queries. Understanding SQL join types, such as INNER JOIN, LEFT JOIN, RIGHT JO 5 min read Join operation Vs Nested query in DBMSThe growth of technology and automation coupled with exponential amounts of data has led to the importance and omnipresence of databases which, simply put, are organized collections of data. Considering a naive approach, one can theoretically keep all the data in one large table, however that increa 5 min read Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used in relational database management systems (RDBMS) to retrieve data from tables. TRC is based on the concept of tuples, which are ordered sets of attribute values that represent a single row or record in a database table. TRC is 4 min read Domain Relational Calculus in DBMSDomain Relational Calculus is a non-procedural query language equivalent in power to Tuple Relational Calculus. Domain Relational Calculus provides only the description of the query but it does not provide the methods to solve it. In Domain Relational Calculus, a query is expressed as, { < x1, x2 2 min read Relational AlgebraIntroduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr 9 min read SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. Joins allow efficient data retrieval, which is essential for generating meaningful observations and solving complex business queries. Understanding SQL join types, such as INNER JOIN, LEFT JOIN, RIGHT JO 5 min read Join operation Vs Nested query in DBMSThe growth of technology and automation coupled with exponential amounts of data has led to the importance and omnipresence of databases which, simply put, are organized collections of data. Considering a naive approach, one can theoretically keep all the data in one large table, however that increa 5 min read Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used in relational database management systems (RDBMS) to retrieve data from tables. TRC is based on the concept of tuples, which are ordered sets of attribute values that represent a single row or record in a database table. TRC is 4 min read Domain Relational Calculus in DBMSDomain Relational Calculus is a non-procedural query language equivalent in power to Tuple Relational Calculus. Domain Relational Calculus provides only the description of the query but it does not provide the methods to solve it. In Domain Relational Calculus, a query is expressed as, { < x1, x2 2 min read Functional Dependencies & NormalizationFunctional Dependency and Attribute ClosureFunctional dependency and attribute closure are essential for maintaining data integrity and building effective, organized, and normalized databases.Functional DependencyA functional dependency A->B in a relation holds if two tuples having the same value of attribute A must have the same value fo 5 min read Armstrong's Axioms in Functional Dependency in DBMSArmstrong's Axioms refer to a set of inference rules, introduced by William W. Armstrong, that are used to test the logical implication of functional dependencies. Given a set of functional dependencies F, the closure of F (denoted as F+) is the set of all functional dependencies logically implied b 4 min read Canonical Cover of Functional Dependencies in DBMSManaging a large set of functional dependencies can result in unnecessary computational overhead. This is where the canonical cover becomes useful. The canonical cover of a set of functional dependencies F is a simplified version of F that retains the same closure as the original set, ensuring no re 7 min read Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate 7 min read The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi 6 min read Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations 4 min read Denormalization in DatabasesDenormalization focuses on combining multiple tables to make queries execute quickly. It adds redundancies in the database though. In this article, weâll explore Denormalization and how it impacts database design. This method can help us to avoid costly joins in a relational database made during nor 6 min read Transactions & Concurrency ControlACID Properties in DBMSIn the world of DBMS, transactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability. This is where the ACID prop 8 min read Types of Schedules in DBMSSchedule, as the name suggests, is a process of lining the transactions and executing them one by one. When there are multiple transactions that are running in a concurrent manner and the order of operation is needed to be set so that the operations do not overlap each other, Scheduling is brought i 7 min read Recoverability in DBMSRecoverability is a critical feature of database systems. It ensures that after a failure, the database returns to a consistent state by permanently saving committed transactions and rolling back uncommitted ones. It relies on transaction logs to undo or redo changes as needed. This is crucial in mu 6 min read Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies 5 min read Deadlock in DBMSIn a Database Management System (DBMS), a deadlock occurs when two or more transactions are waiting indefinitely for one another to release resources (such as locks on tables, rows, or other database objects). This results in a situation where none of the transactions can proceed, effectively bringi 8 min read Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite 8 min read Advanced DBMSIndexing in Databases - Set 1Indexing is a crucial technique used in databases to optimize data retrieval operations. It improves query performance by minimizing disk I/O operations, thus reducing the time it takes to locate and access data. Essentially, indexing allows the database management system (DBMS) to locate data more 8 min read Introduction of B-TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One 8 min read Introduction of B+ TreeB + Tree is a variation of the B-tree data structure. In a B + tree, data pointers are stored only at the leaf nodes of the tree. In this tree, structure of a leaf node differs from the structure of internal nodes. The leaf nodes have an entry for every value of the search field, along with a data p 8 min read Bitmap Indexing in DBMSBitmap Indexing is a data indexing technique used in database management systems (DBMS) to improve the performance of read-only queries that involve large datasets. It involves creating a bitmap index, which is a data structure that represents the presence or absence of data values in a table or col 8 min read Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain 7 min read SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl 7 min read File Organization in DBMS - Set 1A database consists of a huge amount of data. The data is grouped within a table in RDBMS, and each table has related records. A user can see that the data is stored in the form of tables, but in actuality, this huge amount of data is stored in physical memory in the form of files. What is a File?A 6 min read DBMS PracticeLast Minute Notes - DBMSDatabase Management System is an organized collection of interrelated data that helps in accessing data quickly, along with efficient insertion, and deletion of data into the DBMS. DBMS organizes data in the form of tables, schemas, records, etc. DBMS over File System (Limitations of File System)The 15+ min read Top 60 DBMS Interview Questions with Answers for 2025A Database Management System (DBMS) is the backbone of modern data storage and management. Understanding DBMS concepts is critical for anyone looking to work with databases. Whether you're preparing for your first job in database management or advancing in your career, being well-prepared for a DBMS 15+ min read Commonly asked DBMS Interview Questions | Set 2This article is an extension of Commonly asked DBMS interview questions | Set 1.Q1. There is a table where only one row is fully repeated. Write a Query to find the Repeated rowNameSectionabcCS1bcdCS2abcCS1In the above table, we can find duplicate rows using the below query.SELECT name, section FROM 5 min read Like