import matplotlib.pyplot as plt import numpy as np from matplotlib import colors from matplotlib.ticker import PercentFormatter # Creating dataset np.random.seed(23685752) N_points = 10000 n_bins = 20 # Creating distribution x = np.random.randn(N_points) y = .8 ** x + np.random.randn(10000) + 25 legend = ['distribution'] # Creating histogram fig, axs = plt.subplots(1, 1, figsize =(10, 7), tight_layout = True) # Remove axes splines for s in ['top', 'bottom', 'left', 'right']: axs.spines[s].set_visible(False) # Remove x, y ticks axs.xaxis.set_ticks_position('none') axs.yaxis.set_ticks_position('none') # Add padding between axes and labels axs.xaxis.set_tick_params(pad = 5) axs.yaxis.set_tick_params(pad = 10) # Add x, y gridlines axs.grid(b = True, color ='grey', linestyle ='-.', linewidth = 0.5, alpha = 0.6) # Add Text watermark fig.text(0.9, 0.15, 'Jeeteshgavande30', fontsize = 12, color ='red', ha ='right', va ='bottom', alpha = 0.7) # Creating histogram N, bins, patches = axs.hist(x, bins = n_bins) # Setting color fracs = ((N**(1 / 5)) / N.max()) norm = colors.Normalize(fracs.min(), fracs.max()) for thisfrac, thispatch in zip(fracs, patches): color = plt.cm.viridis(norm(thisfrac)) thispatch.set_facecolor(color) # Adding extra features plt.xlabel("X-axis") plt.ylabel("y-axis") plt.legend(legend) plt.title('Customized histogram') # Show plot plt.show()