Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • C++
  • Standard Template Library
  • STL Vector
  • STL List
  • STL Set
  • STL Map
  • STL Stack
  • STL Queue
  • STL Priority Queue
  • STL Interview Questions
  • STL Cheatsheet
  • C++ Templates
  • C++ Functors
  • C++ Iterators
Open In App
Next Article:
Docker Cheat Sheet : Complete Guide (2024)
Next article icon

C++ STL Cheat Sheet

Last Updated : 02 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

The C++ STL Cheat Sheet provides short and concise notes on Standard Template Library (STL) in C++. Designed for programmers that want to quickly go through key STL concepts, the STL cheatsheet covers the concepts such as vectors and other containers, iterators, functors, etc., with their syntax and example.

CPP-STL-Cheatsheet

What is Standard Template Library(STL)?

The C++ Standard Template Library (STL) is a collection of generic class and function templates to provide some commonly used data structures and algorithms. It contains optimized and error-free code for useful containers such as vector, list, stack, queue, etc. It is a part of the standard library of C++ and

Components of STL

C++ STL provides various components to make programming easier and more efficient. These components can be divided into four categories:

  1. Containers
  2. Iterators
  3. Algorithms
  4. Functors

STL Containers

The STL containers are the template classes to implement useful data structures such as dynamic arrays, hashmaps, linked lists, trees, etc. These containers allow programmers to store and manipulate data.

The STL containers can also be divided into 4 parts which are:

  1. Sequential Containers
  2. Container Adapters
  3. Associative Containers
  4. Unordered Containers

1. Sequential Containers

The sequential containers implement the data structures with sequential access. These include:

  • Vector
  • List
  • Deque
  • Array
  • Forward List

2. Container Adapters

The container adapters implement data structures like queues, stacks, etc by providing different interfaces for sequential containers. These include:

  • Stack
  • Queue
  • Priority Queue

3. Associative Containers

The associative containers are used to store ordered data that can be quickly searched using their key value. These include:

  • Set
  • Multiset
  • Map
  • Multimap

4. Unordered Containers

The unordered containers are similar to associative containers except that they don't store sorted data but still provide quick search time using key-value pairs. They are:

  • Unordered Set
  • Unordered Multiset
  • Unordered Map
  • Unordered Multimap

Each container is defined inside its respective header file with the same name.

1.1 - STL Vector

The vector container provides a dynamic array. It is defined as std::vector class template inside <vector> header file.

Vector Declaration

vector <data_type> vector_name;    // 1D Vector
vector < vector<data_type> > vector_name; // 2D Vector

std::vector Member Functions

S. No.

Function

Description

Time Complexity

1.

begin()

Returns an iterator to the first element.

O(1)

2.

end()

Returns an iterator to the theoretical element after the last element.

O(1)

3.

size()

Returns the number of elements present.

O(1)

4.

empty()

Returns true if the vector is empty, false otherwise.

O(1)

5.

at()

Return the element at a particular position.

O(1)

6.

assign()

Assign a new value to the vector elements.

O(n)

7.

push_back()

Adds an element to the back of the vector.

O(1)

8.

pop_back()

Removes an element from the end.

O(1)

9.

insert()

Insert an element at the specified position.

O(n)

10.

erase()

Delete the elements at a specified position or range.

O(n)

11.

clear()

Removes all elements.

O(n)

Example:

C++
// C++ program to illustrate the vector container #include <iostream> #include <vector> using namespace std;  int main() {     // 1d vector with initialization list     vector<int> v1 = { 1, 2, 3, 4, 5 };     // 2d vector with size and element value initialization     vector<vector<int> > v2(3, vector<int>(3, 5));      // adding values using push_back()     v1.push_back(6);     // printing v1 using size()     cout << "v1: ";     for (int i = 0; i < v1.size(); i++) {         cout << v1[i] << " ";     }     cout << endl;      v1.erase(v1.begin() + 4);     // printing v1 using iterators     cout << "v1: ";     for (auto i = v1.begin(); i != v1.end(); i++) {         cout << *i << " ";     }      // printing v2 using range based for loop     cout << "v2:-" << endl;     for (auto i : v2) {         for (auto j : i) {             cout << j << " ";         }         cout << endl;     }     return 0; } 

Output
v1: 1 2 3 4 5 6  v1: 1 2 3 4 6 v2:- 5 5 5  5 5 5  5 5 5 

1.2 - STL List

The list container implements the doubly linked list data structure. It is defined as std::list inside <list> header file.

List Declaration

list <data_type> list_name;

std::List Member Functions

S. No. 

Function

Description

Time Complexity

1.

begin()

Return the iterator to the first element.

O(1)

2.

end()

Returns an iterator to the theoretical element after the last element.

O(1)

3.

size()

Returns the number of elements in the list.

O(1)

4.

push_back()

Adds one element at the end of the list.

O(1)

5.

pop_back()

Removes a single element from the end.

O(1)

6.

push_front()

Adds a single element to the front of the list.

O(1)

7.

pop_front()

Removes a single element from the front.

O(1)

8.

insert()

Inserts an element at the specified position.

O(n)

9.

erase()

Deletes the element at the given position.

O(n)

10.

remove()

Removes all the copies of the given elements from the list.

O(n)

Example

C++
// C++ Program to illustrate the list container #include <iostream> #include <list> #include <vector> using namespace std;  // driver code int main() {     // creating std::list object using initializer list     list<int> l1 = { 1, 5, 9, 1, 4, 6 };      // vector for initialization     vector<char> v = { 'G', 'e', 'e', 'k', 's' };     list<int> l2(v.begin(), v.end());      // printing first element     cout << "First element if l1: " << l1.front() << endl;      // adding element     l1.insert(l1.begin(), 5);      // deleting element     l1.erase(l1.begin());      // traversing and printing l1     cout << "l1: ";     for (auto i = l1.begin(); i != l1.end(); i++) {         cout << *i << " ";     }     cout << endl;      // traversing and printing l2     cout << "l2: ";     for (auto i : l2) {         cout << char(i);     }     cout << endl;      return 0; } 

Output
First element if l1: 1 l1: 1 5 9 1 4 6  l2: Geeks

1.3 - STL Deque

The deque implements the double-ended queue which follows the FIFO mode of operation but unlike the queue, the deque can grow and shrink from both ends. It is defined as std::deque inside the <deque> header file.

Deque Declaration

deque <data_type> dequeu_name;

std::deque Member Functions

S. No.

Function

Description

Time Complexity

1.

begin()

Returns iterator to the first element.

O(1)

2.

end()

Returns an iterator to the theoretical element after the last element.

O(1)

3.

at()

Access specified element.

O(1)

4.

[ ]

Access element at the given index.

O(1)

5.

front()

Returns the first element.

O(1)

6.

back()

Returns the last element.

O(1)

7.

size()

Returns the number of elements.

O(1)

8.

push_back()

Add the elements at the end.

O(1)

9.

pop_back()

Removes the elements from the end.

O(1)

10.

push_front()

Add the elements at the front.

O(1)

11.

pop_front()

Removes the element from the front.

O(1)

Example

C++
// C++ program to illustrate the deque #include <deque> #include <iostream> using namespace std;  int main() {     // creating a deque     deque<int> d = { 1, 2, 3, 4, 5 };      // removing two elements from the back and pushing them     // at the front     d.push_front(d.back());     d.pop_back();     d.push_front(d.back());     d.pop_back();      for (auto i : d) {         cout << i << " ";     }      return 0; } 

Output
4 5 1 2 3 

1.4 - STL Stack

The stack is a container adaptor that operates one LIFO principle. It is defined as std::stack in <stack> header file.

Stack Declaration

stack <data_type> stack_name;

std::stack Member Functions

S. No.

Function

Description

Time Complexity

1.

empty()

Returns true if the stack is empty, false otherwise.

O(1)

2.

size()

Returns the number of elements in the stack.

O(1)

3.

top()

Returns the top element.

O(1)

4.

push(g)

Push one element in the stack.

O(1)

5.

pop()

Removes one element from the stack.

O(1)

Example

C++
// C++ Program to illustrate the stack #include <bits/stdc++.h> using namespace std;  int main() {     stack<int> s;      for (int i = 1; i <= 5; i++) {         s.push(i);     }      s.push(6);     // checking top element     cout << "s.top() = " << s.top() << endl;      // getting all the elements     cout << "s: ";     while (!s.empty()) {         cout << s.top() << " ";         s.pop();     }      // size after popping all elements     cout << "Final Size: " << s.size();      return 0; } 

Output
s.top() = 6 s: 6 5 4 3 2 1 Final Size: 0

1.5 - STL Queue

The queue is a container adapter that uses the FIFO mode of operation where the most recently inserted element can be accessed at last. It is defined as the std::queue class template in the <queue> header file.

Queue Declaration

queue <data_type> queue_name;

std::queue Member Functions

S. No.

Function

Description

Time Complexity

1.

empty()

Returns true if the queue is empty, otherwise false.

O(1)

2.

size()

Returns the number of items in the queue.

O(1)

3.

front()

Returns the front element.

O(1)

4.

back()

Returns the element at the end.

O(1)

5.

push()

Add an item to the queue.

O(1)

6.

pop()

Removes an item from the queue.

O(1)

Example

C++
// C++ program to illustate the queue container #include <iostream> #include <queue> using namespace std;  int main() {      // creating queue     queue<int> q;      // pushing elements     for (int i = 1; i <= 5; i++) {         q.push(i);     }     q.push(6);      cout << "q.front() = " << q.front() << endl;     cout << "q.back() = " << q.back() << endl;      // printing queue by popping all elements     cout << "q: ";     int size = q.size();     for (int i = 0; i < size; i++) {         cout << q.front() << " ";         q.pop();     }      return 0; } 

Output
q.front() = 1 q.back() = 6 q: 1 2 3 4 5 6 

1.6 - STL Set

The set is an associative container that stores unique values in sorted order, either ascending or descending. It generally implements a red-black tree as an underlying data structure. It is defined as std::set class template inside <set> header file.

Note: To store the multiple keys, we can use the multiset container.

Set Declaration

set <data_type> set_name;

std::set Member Functions

S. No.

Function

Description

Time Complexity

1.

begin()

Returns an iterator to the first element.

O(1)

2.

end()

Return an iterator to the last element.

O(1)

3.

size()

Returns the number of elements.

O(1)

4.

empty()

Checks if the container is empty.

O(1)

5.

insert()

Inserts a single element.

O(logn)

6.

erase()

Removes the given element.

O(logn)

7.

clear()

Removes all elements.

O(n)

8.

find()

Returns the pointer to the given element if present, otherwise, a pointer to the end.

O(logn)

Example

C++
// C++ program to illustrate set #include <iostream> #include <set> #include <vector> using namespace std;  int main() {     // creating vector     vector<int> v = { 1, 5, 3, 4, 2 };     // creating set using vector v     set<int> s(v.begin(), v.end());      // finding 4     if (s.find(4) == s.end()) {         cout << "4 not found" << endl;     }     else {         cout << "4 found" << endl;     }      // adding 9     s.insert(9);      // printing set     cout << "s: ";     for (set<int>::iterator i = s.begin(); i != s.end();          i++) {         cout << *i << " ";     }     cout << endl;     return 0; } 

Output
4 found s: 1 2 3 4 5 9  

1.7 - STL Map

Maps are associative containers used to store the key-value pairs where each key should be unique. It generally implements a red-black tree to store data in sorted order. It is defined as std::map inside the <map> header file.

Note: To store the multiple keys, we can use the multimap container.

Map Declaration

map <key_type, value_type> map_name;

std::map Member Functions

S. No.

Function

Description

Time Complexity

1.

begin()

Returns an iterator to the first element.

O(1)

2.

end()

Returns an iterator to the theoretical element that follows the last element

O(1)

3.

size()

Returns the number of elements in the map

O(1)

4.

insert()

Adds a new element to the map.

O(logn)

5.

erase(iterator)

Removes the element at the position pointed by the iterator.

O(logn)

6.

erase(key)

Removes the key and its value from the map.

O(logn)

7.

clear()

Removes all the elements from the map.

O(n)

8.

find(key)

Return iterator to the element with the given key if found, otherwise returns iterator to the end.

O(logn)

Example

C++
// C++ Program to illustrate the map container #include <iostream> #include <map> using namespace std;  int main() {      // creating std::map object     map<int, string> m;      // adding elements     m[1] = "ONE";     m[2] = "TWO";     m[3] = "THREE";      // checking size     cout << "Size of map m: " << m.size() << endl;      // inserting using insert pair     m.insert({ 4, "FOUR" });      // deleting key 2 with its value     m.erase(2);      // printing the map     cout << "Map:-" << endl;     for (auto i : m) {         cout << "Key: " << i.first << '\t';         cout << "Value: " << i.second << endl;     }      return 0; } 

Output
Size of map m: 3 Map:- Key: 1    Value: ONE Key: 3    Value: THREE Key: 4    Value: FOUR

1.8 - STL Unordered_set

The unordered_set is the version of the set container where the data is not sorted but we can still perform a quick search. It is due to the fact that these unordered_sets are implemented using hash tables. It is defined as std::unordered_set inside the <unordered_set> header file.

Note: To store the multiple keys, we can use the unordered_multiset container.

unordered_set Declaration

unordered_set <data_type> set_name;

std::unordered_set Member Functions

S. No.

Functions

Description

Time Complexity

1.

begin()

Returns an iterator to the first element.

O(1)

2.

end()

Returns an iterator to the theoretical element that follows the last element

O(1)

3.

size()

Returns the number of elements.

O(1)

4.

empty()

Returns true if the unordered_set is empty, otherwise false.

O(1)

5.

insert()

Insert an item in the container.

O(1)

6.

erase()

Removes an element from the container.

O(1)

7.

find()

Returns the pointer to the given element if present, otherwise, a pointer to the end.

O(1)

Example

C++
// C++ Program to illustrate the unordered_set container #include <iostream> #include <unordered_set> using namespace std;  int main() {      // creating an unordered_set object     unordered_set<int> us = { 1, 5, 2, 3, 4 };      // checking size     cout << "Size of us: " << us.size() << endl;      // inserting data     us.insert(7);      // finding some key     if (us.find(3) != us.end()) {         cout << "3 found!" << endl;     }     else {         cout << "3 not found" << endl;     }      // traversing unordered_set using iterators     cout << "us: ";     for (auto i = us.begin(); i != us.end(); i++) {         cout << *i << " ";     }     cout << endl;      return 0; } 

Output
Size of us: 5 3 found! us: 7 4 1 5 2 3 

1.9 - STL Unordered_map

Unordered_maps are stores the data in the form of key-value pairs. They implement the hash table so there is no particular order in which the data is stored. They are defined as std::unordered_map class template inside <unordered_map> header file.

Note: To store the multiple keys, we can use the unordered_multimap container.

unordered_map Declaration

unordered_map <key_type, value_type> map_name;

std::unordered_map Member Functions

S. No.

Function

Description

Time Complexity

1.

begin()

Returns an iterator to the first element.

O(1)

2.

end()

Returns an iterator to the theoretical element that follows the last element

O(1)

3.

size()

Returns the number of elements.

O(1)

4.

empty()

Returns true if the unordered_set is empty, otherwise false.

O(1)

5.

find()

Returns the pointer to the given element if present, otherwise, a pointer to the end.

O(1)

6.

bucket()

Returns the bucket number where the data is stored.

O(1)

7.

insert()

Insert an item in the container.

O(1)

8.

erase()

Removes an element from the container.

O(1)

Example

C++
// C++ program to illustrate the unordered_map container #include <iostream> #include <unordered_map> using namespace std;  int main() {     // creating unordered_map object     unordered_map<int, string> umap;      // inserting key value pairs     umap[1] = "ONE";     umap[2] = "TWO";     umap[3] = "THREE";     umap.insert({ 4, "FOUR" });      // finding some key     if (umap.find(12) != umap.end()) {         cout << "Key 12 Found!" << endl;     }     else {         cout << "Key 12 Not Found!" << endl;     }      // traversing whole map at once using iterators     cout << "umap:--" << endl;     for (auto i = umap.begin(); i != umap.end(); i++) {         cout << "Key:" << i->first              << "\tValue: " << i->second << endl;     }      return 0; } 

Output
Key 12 Not Found! umap:-- Key:4    Value: FOUR Key:3    Value: THREE Key:2    Value: TWO Key:1    Value: ONE

STL Iterators

Iterators are the objects used to iterate through the STL containers. They can be seen as pointers that are used to traverse and manipulate the data inside containers.

  • Iterators are defined inside the <iterator> header file.
  • Each container has its own iterators.

Iterators can be classified into 5 types which are:

STL Iterators

1. Input Iterator

Input Iterators are used for single-pass input operations.

  • They can only be used for accessing (read operations) not assigning.
  • They cannot be decremented.
  • An element can only be accessed once.
  • They have limited capability and come lowest in the iterator hierarchy.

istream_iterator is an example of the input iterator.

2. Output Iterator

Output Iterators are used for single-pass output operations.

  • They can only be used for assigning purposes (write operations).
  • An element can only be accessed once.
  • They cannot be decremented.
  • They come lowest in the hierarchy along with the Input Iterators.

ostream_iterator is an example of the output iterator.

3. Forward Iterator

Forward iterators contain features of both input and output iterators along with:

  • It can be used for both read and write operations.
  • It cannot be decremented as it can move only in a single direction.
  • It can only move sequentially i.e., one step at a time.
  • It is in the upper hierarchy compared to both input and output iterators.

forward_list::iterator are examples of the forward iterators.

4. Bi-Directional Iterator

The bi-directional iterators have all the features of forward iterators along with:

  • They can move in both forward and backward directions.
  • They can be used for both read and write operations.

map::iterator, set::iterator, multiset::iterator, and multimap::iterators are some examples of input iterator.

5. Random Access Iterator

Random access iterators are the most powerful iterators.

  • They contain features of all the other iterators.
  • They can move in both forward and backward directions.
  • Read and write operations can be performed.
  • Can move to any point in the container i.e. random access.

vector::iterator and array::iterator are some examples.

STL Algorithms

Algorithms are set of generic and optimal implementations of some useful algorithms to make programming easier and more efficient.

  • These algorithms work with STL containers and iterators.
  • Algorithms are defined inside the <algorithm> header file.
  • C++ STL contains around 114 Algorithms which are listed in the article - Algorithm Library in C++ STL

Some of the commonly used algorithms are:

1. Sort

The std::sort algorithm is used to sort data in any given order.

Syntax of std::sort

sort (beginIterator, endIterator);
sort (beginIterator, endIterator, comparator); // for custom comparator

Note: Iterators must be RandomAccessIterators.

Example

C++
// C++ program to demonstrate default behaviour of // sort() in STL. #include <bits/stdc++.h> using namespace std;  int main() {     int arr[] = { 1, 5, 8, 9, 6, 7, 3, 4, 2, 0 };     int n = sizeof(arr) / sizeof(arr[0]);      /*Here we take two parameters, the beginning of the     array and the length n upto which we want the array to     be sorted*/     sort(arr, arr + n);      cout << "\nArray after sorting using "             "default sort is : \n";     for (int i = 0; i < n; ++i)         cout << arr[i] << " ";      return 0; } 

Output
Array after sorting using default sort is :  0 1 2 3 4 5 6 7 8 9 

2. Copy

The std::copy method efficiently copies a range of elements to another container using its iterators.

Syntax of std::copy

copy (beginIterator, endIterator, destIterator);

Note: Iterators can be of InputIterator, OutputIterator or ForwardIterator.

Example

C++
// C++ Program to print vector using copy function and input // and output stream iterators #include <algorithm> #include <iostream> #include <iterator> #include <sstream> #include <vector> using namespace std;  int main() {     // creating vector     vector<int> v = { 1, 2, 3, 4, 5 };      // copying data to ostream     copy(v.begin(), v.end(),          ostream_iterator<int>(cout, " "));     return 0; } 

Output
1 2 3 4 5 

3. Max Element

The std::max_element implements an efficient algorithm to find the maximum element in the container. To find minimum element, use std::min_element.

Syntax of std::max_element

max_element (firstIterator, lastIterator);

Note: The iterators can be of type ForwardIterators.

Example

C++
// C++ program to demonstrate the use of std::max_element #include <algorithm> #include <iostream> #include <iterator> #include <vector> using namespace std; int main() {     // creating vector     vector<int> v = { 10, 88, 2, 9, 45, 82, 546, 42, 221 };      // Finding the maximum value between the first and the     // fourth element     auto max = max_element(begin(v), end(v));      cout << "Maximum Element: " << *max << "\n";     return 0; } 

Output
Maximum Element: 546

4. Find

The std::find function is used to find the element in the given range.

Syntax of std::find

find (firstIterator, lastIterator, value);

Note: The iterators can be of the type InputIterator, ForwardIterator.

Example

C++
// C++ program to illustrate the find() #include <algorithm> #include <iostream> #include <vector> using namespace std;  int main() {      // creating vector     vector<int> v         = { 1, 8, 97, 3, 654, 132, 65, 4, 321, 5, 45 };      // finding 5     auto itr = find(v.begin(), v.end(), 5);     if (itr != v.end()) {         cout << *itr << " is found!" << endl;     }     else {         cout << "5 is not found!" << endl;     }      return 0; } 

Output
5 is found!

5. For Each

The std::for_each algorithm applies the specified instruction to each of the elements in the given range.

Syntax of std::for_each

for_each (firstIterator, lastIterator, unaryFunction);

Note: The iterators can be of the type ForwardIterator, InputIterator.

Example

C++
// C++ program to print vector using for #include <algorithm> #include <iostream> #include <iterator> #include <vector> using namespace std;  int main() {      // creating vector     vector<int> v = { 1, 2, 3, 4, 5 };      // adding 1 to each element     for_each(v.begin(), v.end(), [](int& i){       i = i + 1;     });      // printing vector     copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));      return 0; } 

Output
2 3 4 5 6 

STL Function Objects (Functors)

The Function Objects, also known as Functors, are the objects that behave like a function. It is due to the overloading of the ( ) parenthesis operator. The functors are defined inside the <functional> header file.

STL provides some predefined functors such as:

  1. equal_to
  2. not_equal_to
  3. greater
  4. less
  5. plus
  6. minus

Example

C++
// C++ program to illustrate some builtin functors #include <functional> #include <iostream> using namespace std;  int main() {     // creating objects     equal_to<int> eq;     not_equal_to<int> neq;     greater<int> gt;     less<int> ls;     plus<int> p;     minus<int> m;      // printing return values     cout << "Functors and their return value\n";     cout << boolalpha;     cout << "equal_to, (10,20): " << eq(10, 20) << endl;     cout << "greater, (10,20): " << gt(10, 20) << endl;     cout << "less, (10,20): " << ls(10, 20) << endl;     cout << "plus, (10,20): " << p(10, 20) << endl;     cout << "minus(10,20): " << m(10, 20) << endl;      return 0; } 

Output
Functors and their return value equal_to, (10,20): false greater, (10,20): false less, (10,20): true plus, (10,20): 30 minus(10,20): -10

Next Article
Docker Cheat Sheet : Complete Guide (2024)
author
kartik
Improve
Article Tags :
  • C++
  • STL
  • GFG Sheets
Practice Tags :
  • CPP
  • STL

Similar Reads

  • Geeksforgeeks Cheatsheets - All Coding Cheat Sheets Collections
    Cheatsheets are short documents that contain all the most essential information about a specific technology in short, such as its syntax, commands, functions, or its features. Sheets are designed to help users to learn quickly and these Sheets are given the basics Overview of the technology without
    4 min read
  • Subnet Mask Cheat Sheet
    A Subnet Mask is a numerical value that describes a computer or device's how to divide an IP address into two parts: the network portion and the host portion. The network element identifies the network to which the computer belongs and the host part identifies the unique computer on that network. An
    9 min read
  • Git Cheat Sheet
    Git Cheat Sheet is a comprehensive quick guide for learning Git concepts, from very basic to advanced levels. By this Git Cheat Sheet, our aim is to provide a handy reference tool for both beginners and experienced developers/DevOps engineers. This Git Cheat Sheet not only makes it easier for newcom
    10 min read
  • NumPy Cheat Sheet: Beginner to Advanced (PDF)
    NumPy stands for Numerical Python. It is one of the most important foundational packages for numerical computing & data analysis in Python. Most computational packages providing scientific functionality use NumPy’s array objects as the lingua franca for data exchange. In this Numpy Cheat sheet f
    15+ min read
  • Linux Commands Cheat Sheet
    Linux, often associated with being a complex operating system primarily used by developers, may not necessarily fit that description entirely. While it can initially appear challenging for beginners, once you immerse yourself in the Linux world, you may find it difficult to return to your previous W
    13 min read
  • Pandas Cheat Sheet for Data Science in Python
    Pandas is a powerful and versatile library that allows you to work with data in Python. It offers a range of features and functions that make data analysis fast, easy, and efficient. Whether you are a data scientist, analyst, or engineer, Pandas can help you handle large datasets, perform complex op
    15+ min read
  • Java Cheat Sheet
    Java is a programming language and platform that has been widely used since its development by James Gosling in 1991. It follows the Object-oriented Programming concept and can run programs written on any OS platform. Java is a high-level, object-oriented, secure, robust, platform-independent, multi
    15+ min read
  • C++ STL Cheat Sheet
    The C++ STL Cheat Sheet provides short and concise notes on Standard Template Library (STL) in C++. Designed for programmers that want to quickly go through key STL concepts, the STL cheatsheet covers the concepts such as vectors and other containers, iterators, functors, etc., with their syntax and
    15+ min read
  • Docker Cheat Sheet : Complete Guide (2024)
    Docker is a very popular tool introduced to make it easier for developers to create, deploy, and run applications using containers. A container is a utility provided by Docker to package and run an application in a loosely isolated environment. Containers are lightweight and contain everything neede
    11 min read
  • C++ Cheatsheet
    This is a C++ programming cheat sheet. It is useful for beginners and intermediates looking to learn or revise the concepts of C++ programming. While learning a new language, it feels annoying to switch pages and find different websites for different concepts that are easily understandable. You can
    15+ min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences