Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on Hash
  • Practice Hash
  • MCQs on Hash
  • Hashing Tutorial
  • Hash Function
  • Index Mapping
  • Collision Resolution
  • Open Addressing
  • Separate Chaining
  • Quadratic probing
  • Double Hashing
  • Load Factor and Rehashing
  • Advantage & Disadvantage
Open In App
Next Article:
Sort elements by frequency | Set 4 (Efficient approach using hash)
Next article icon

Count quadruples from four sorted arrays whose sum is equal to a given value x

Last Updated : 27 Sep, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given four sorted arrays each of size n of distinct elements. Given a value x. The problem is to count all quadruples(group of four numbers) from all the four arrays whose sum is equal to x.
Note: The quadruple has an element from each of the four arrays.


Examples: 

Input : arr1 = {1, 4, 5, 6},         arr2 = {2, 3, 7, 8},         arr3 = {1, 4, 6, 10},         arr4 = {2, 4, 7, 8}          n = 4, x = 30 Output : 4 The quadruples are: (4, 8, 10, 8), (5, 7, 10, 8), (5, 8, 10, 7), (6, 7, 10, 7)  Input : For the same above given fours arrays         x = 25 Output : 14

Method 1 (Naive Approach): 

Using four nested loops generate all quadruples and check whether elements in the quadruple sum up to x or not. 

C++
   // C++ implementation to count quadruples from four sorted arrays // whose sum is equal to a given value x #include <bits/stdc++.h>  using namespace std;  // function to count all quadruples from // four sorted arrays whose sum is equal // to a given value x int countQuadruples(int arr1[], int arr2[],                     int arr3[], int arr4[], int n, int x) {     int count = 0;      // generate all possible quadruples from     // the four sorted arrays     for (int i = 0; i < n; i++)         for (int j = 0; j < n; j++)             for (int k = 0; k < n; k++)                 for (int l = 0; l < n; l++)                     // check whether elements of                     // quadruple sum up to x or not                     if ((arr1[i] + arr2[j] + arr3[k] + arr4[l]) == x)                         count++;      // required count of quadruples     return count; }  // Driver program to test above int main() {     // four sorted arrays each of size 'n'     int arr1[] = { 1, 4, 5, 6 };     int arr2[] = { 2, 3, 7, 8 };     int arr3[] = { 1, 4, 6, 10 };     int arr4[] = { 2, 4, 7, 8 };      int n = sizeof(arr1) / sizeof(arr1[0]);     int x = 30;     cout << "Count = "          << countQuadruples(arr1, arr2, arr3,                             arr4, n, x);     return 0; } 
Java
// Java implementation to count quadruples from four sorted arrays // whose sum is equal to a given value x class GFG { // function to count all quadruples from // four sorted arrays whose sum is equal // to a given value x      static int countQuadruples(int arr1[], int arr2[],             int arr3[], int arr4[], int n, int x) {         int count = 0;          // generate all possible quadruples from         // the four sorted arrays         for (int i = 0; i < n; i++) {             for (int j = 0; j < n; j++) {                 for (int k = 0; k < n; k++) {                     for (int l = 0; l < n; l++) // check whether elements of                     // quadruple sum up to x or not                     {                         if ((arr1[i] + arr2[j] + arr3[k] + arr4[l]) == x) {                             count++;                         }                     }                 }             }         }          // required count of quadruples         return count;     }  // Driver program to test above     public static void main(String[] args) {          // four sorted arrays each of size 'n'         int arr1[] = {1, 4, 5, 6};         int arr2[] = {2, 3, 7, 8};         int arr3[] = {1, 4, 6, 10};         int arr4[] = {2, 4, 7, 8};          int n = arr1.length;         int x = 30;         System.out.println("Count = "                 + countQuadruples(arr1, arr2, arr3,                         arr4, n, x));      } } //This code is contributed by PrinciRaj1992 
Python3
# A Python3 implementation to count  # quadruples from four sorted arrays # whose sum is equal to a given value x  # function to count all quadruples  # from four sorted arrays whose sum  # is equal to a given value x def countquadruples(arr1, arr2,                       arr3, arr4, n, x):     count = 0      # generate all possible      # quadruples from the four     # sorted arrays     for i in range(n):         for j in range(n):             for k in range(n):                 for l in range(n):                      # check whether elements of                     # quadruple sum up to x or not                     if (arr1[i] + arr2[j] +                          arr3[k] + arr4[l] == x):                         count += 1                              # required count of quadruples     return count  # Driver Code arr1 = [1, 4, 5, 6] arr2 = [2, 3, 7, 8] arr3 = [1, 4, 6, 10] arr4 = [2, 4, 7, 8 ] n = len(arr1) x = 30 print("Count = ", countquadruples(arr1, arr2,                                     arr3, arr4, n, x))  # This code is contributed  # by Shrikant13 
C#
// C# implementation to count quadruples from four sorted arrays  // whose sum is equal to a given value x  using System; public class GFG {  // function to count all quadruples from  // four sorted arrays whose sum is equal  // to a given value x       static int countQuadruples(int []arr1, int []arr2,              int []arr3, int []arr4, int n, int x) {          int count = 0;           // generate all possible quadruples from          // the four sorted arrays          for (int i = 0; i < n; i++) {              for (int j = 0; j < n; j++) {                  for (int k = 0; k < n; k++) {                      for (int l = 0; l < n; l++) // check whether elements of                      // quadruple sum up to x or not                      {                          if ((arr1[i] + arr2[j] + arr3[k] + arr4[l]) == x) {                              count++;                          }                      }                  }              }          }           // required count of quadruples          return count;      }   // Driver program to test above      public static void Main() {           // four sorted arrays each of size 'n'          int []arr1 = {1, 4, 5, 6};          int []arr2 = {2, 3, 7, 8};          int []arr3 = {1, 4, 6, 10};          int []arr4 = {2, 4, 7, 8};           int n = arr1.Length;          int x = 30;          Console.Write("Count = "                 + countQuadruples(arr1, arr2, arr3,                          arr4, n, x));       }  }   // This code is contributed by PrinciRaj19992 
PHP
<?php // PHP implementation to count quadruples  // from four sorted arrays whose sum is  // equal to a given value x  // function to count all quadruples from // four sorted arrays whose sum is equal // to a given value x function countQuadruples(&$arr1, &$arr2,                          &$arr3, &$arr4,                            $n, $x) {     $count = 0;      // generate all possible quadruples      // from the four sorted arrays     for ($i = 0; $i < $n; $i++)         for ($j = 0; $j < $n; $j++)             for ($k = 0; $k < $n; $k++)                 for ($l = 0; $l < $n; $l++)                                      // check whether elements of                     // quadruple sum up to x or not                     if (($arr1[$i] + $arr2[$j] +                           $arr3[$k] + $arr4[$l]) == $x)                         $count++;      // required count of quadruples     return $count; }  // Driver Code  // four sorted arrays each of size 'n' $arr1 = array( 1, 4, 5, 6 ); $arr2 = array( 2, 3, 7, 8 ); $arr3 = array( 1, 4, 6, 10 ); $arr4 = array( 2, 4, 7, 8 );  $n = sizeof($arr1); $x = 30; echo "Count = " . countQuadruples($arr1, $arr2, $arr3,                                        $arr4, $n, $x);  // This code is contributed by ita_c ?> 
JavaScript
<script> // Javascript implementation to count quadruples from four sorted arrays // whose sum is equal to a given value x          // function to count all quadruples from // four sorted arrays whose sum is equal // to a given value x     function countQuadruples(arr1,arr2,arr3,arr4,n,x)     {         let count = 0;           // generate all possible quadruples from         // the four sorted arrays         for (let i = 0; i < n; i++) {             for (let j = 0; j < n; j++) {                 for (let k = 0; k < n; k++) {                     for (let l = 0; l < n; l++) // check whether elements of                     // quadruple sum up to x or not                     {                         if ((arr1[i] + arr2[j] + arr3[k] + arr4[l]) == x) {                             count++;                         }                     }                 }             }         }           // required count of quadruples         return count;     }          // Driver program to test above     let arr1=[1, 4, 5, 6];     let arr2=[2, 3, 7, 8];     let arr3=[1, 4, 6, 10];     let arr4=[2, 4, 7, 8];     let n = arr1.length;     let x = 30;     document.write("Count = "                 + countQuadruples(arr1, arr2, arr3,                         arr4, n, x));          //This code is contributed by rag2127      </script> 

Output:  

Count = 4

Time Complexity: O(n4) 
Auxiliary Space: O(1)
 

Method 2 (Binary Search): Generate all triplets from the 1st three arrays. For each triplet so generated, find the sum of elements in the triplet. Let it be T. Now, search the value (x - T) in the 4th array. If the value found in the 4th array, then increment count. This process is repeated for all the triplets generated from the 1st three arrays. 

C++
// C++ implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x #include <bits/stdc++.h>  using namespace std;  // find the 'value' in the given array 'arr[]' // binary search technique is applied bool isPresent(int arr[], int low, int high, int value) {     while (low <= high) {         int mid = (low + high) / 2;          // 'value' found         if (arr[mid] == value)             return true;         else if (arr[mid] > value)             high = mid - 1;         else             low = mid + 1;     }      // 'value' not found     return false; }  // function to count all quadruples from four // sorted arrays whose sum is equal to a given value x int countQuadruples(int arr1[], int arr2[], int arr3[],                     int arr4[], int n, int x) {     int count = 0;      // generate all triplets from the 1st three arrays     for (int i = 0; i < n; i++)         for (int j = 0; j < n; j++)             for (int k = 0; k < n; k++) {                  // calculate the sum of elements in                 // the triplet so generated                 int T = arr1[i] + arr2[j] + arr3[k];                  // check if 'x-T' is present in 4th                 // array or not                 if (isPresent(arr4, 0, n, x - T))                      // increment count                     count++;             }      // required count of quadruples     return count; }  // Driver program to test above int main() {     // four sorted arrays each of size 'n'     int arr1[] = { 1, 4, 5, 6 };     int arr2[] = { 2, 3, 7, 8 };     int arr3[] = { 1, 4, 6, 10 };     int arr4[] = { 2, 4, 7, 8 };      int n = sizeof(arr1) / sizeof(arr1[0]);     int x = 30;     cout << "Count = "          << countQuadruples(arr1, arr2, arr3, arr4, n, x);     return 0; } 
Java
// Java implementation to count quadruples from  // four sorted arrays whose sum is equal to a  // given value x  class GFG {          // find the 'value' in the given array 'arr[]'      // binary search technique is applied      static boolean isPresent(int[] arr, int low,                             int high, int value)      {          while (low <= high)          {             int mid = (low + high) / 2;               // 'value' found              if (arr[mid] == value)                  return true;              else if (arr[mid] > value)                  high = mid - 1;              else                 low = mid + 1;          }           // 'value' not found          return false;      }       // function to count all quadruples from four      // sorted arrays whose sum is equal to a given value x      static int countQuadruples(int[] arr1, int[] arr2,                                int[] arr3, int[] arr4,                                int n, int x)      {          int count = 0;           // generate all triplets from the 1st three arrays          for (int i = 0; i < n; i++)              for (int j = 0; j < n; j++)                  for (int k = 0; k < n; k++)                  {                      // calculate the sum of elements in                      // the triplet so generated                      int T = arr1[i] + arr2[j] + arr3[k];                       // check if 'x-T' is present in 4th                      // array or not                      if (isPresent(arr4, 0, n-1, x - T))                               // increment count                          count++;                  }           // required count of quadruples          return count;      }       // Driver code     public static void main(String[] args)      {          // four sorted arrays each of size 'n'          int[] arr1 = { 1, 4, 5, 6 };          int[] arr2 = { 2, 3, 7, 8 };          int[] arr3 = { 1, 4, 6, 10 };          int[] arr4 = { 2, 4, 7, 8 };          int n = 4;          int x = 30;          System.out.println( "Count = "         + countQuadruples(arr1, arr2, arr3, arr4, n, x));      } }   // This code is contributed by Rajput-Ji 
Python3
# Python implementation to count quadruples from # four sorted arrays whose sum is equal to a # given value x  # find the 'value' in the given array 'arr[]' # binary search technique is applied def isPresent(arr,low,high,value):     while(low<=high):         mid=(low+high)//2         # 'value' found         if(arr[mid]==value):             return True         elif(arr[mid]>value):             high=mid-1         else:             low=mid+1     # 'value' not found     return False  # function to count all quadruples from four # sorted arrays whose sum is equal to a given value x  def countQuadruples(arr1,arr2,arr3,arr4,n,x):     count=0          #generate all triplets from the 1st three arrays     for i in range(n):         for j in range(n):             for k in range(n):                 # calculate the sum of elements in                 # the triplet so generated                 T=arr1[i]+arr2[j]+arr3[k]                                  # check if 'x-T' is present in 4th                 # array or not                 if(isPresent(arr4,0,n-1,x-T)):                     # increment count                     count=count+1     # required count of quadruples     return count      # Driver program to test above  # four sorted arrays each of size 'n' arr1=[1, 4, 5, 6] arr2=[2, 3, 7, 8] arr3=[1, 4, 6, 10] arr4=[2, 4, 7, 8]  n=len(arr1) x=30 print("Count = {}".format(countQuadruples(arr1,arr2,arr3,arr4,n,x)))  # This code is contributed by Pushpesh Raj. 
C#
// C# implementation to count quadruples from  // four sorted arrays whose sum is equal to a  // given value x  using System;  class GFG {          // find the 'value' in the given array 'arr[]'      // binary search technique is applied      static bool isPresent(int[] arr, int low,                             int high, int value)      {          while (low <= high)          {             int mid = (low + high) / 2;               // 'value' found              if (arr[mid] == value)                  return true;              else if (arr[mid] > value)                  high = mid - 1;              else                 low = mid + 1;          }           // 'value' not found          return false;      }       // function to count all quadruples from four      // sorted arrays whose sum is equal to a given value x      static int countQuadruples(int[] arr1, int[] arr2,                             int[] arr3, int[] arr4,                             int n, int x)      {          int count = 0;           // generate all triplets from the 1st three arrays          for (int i = 0; i < n; i++)              for (int j = 0; j < n; j++)                  for (int k = 0; k < n; k++)                  {                      // calculate the sum of elements in                      // the triplet so generated                      int T = arr1[i] + arr2[j] + arr3[k];                       // check if 'x-T' is present in 4th                      // array or not                      if (isPresent(arr4, 0, n-1, x - T))                               // increment count                          count++;                  }           // required count of quadruples          return count;      }       // Driver code     public static void Main(String[] args)      {          // four sorted arrays each of size 'n'          int[] arr1 = { 1, 4, 5, 6 };          int[] arr2 = { 2, 3, 7, 8 };          int[] arr3 = { 1, 4, 6, 10 };          int[] arr4 = { 2, 4, 7, 8 };          int n = 4;          int x = 30;          Console.WriteLine( "Count = "         + countQuadruples(arr1, arr2, arr3, arr4, n, x));      } }  // This code has been contributed by 29AjayKumar 
PHP
<?php // PHP implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x  // find the 'value' in the given array 'arr[]' // binary search technique is applied function isPresent($arr, $low, $high, $value) {     while ($low <= $high)     {         $mid = ($low + $high) / 2;          // 'value' found         if ($arr[$mid] == $value)             return true;         else if ($arr[$mid] > $value)             $high = $mid - 1;         else             $low = $mid + 1;     }      // 'value' not found     return false; }  // function to count all quadruples from  // four sorted arrays whose sum is equal  // to a given value x function countQuadruples($arr1, $arr2, $arr3,                          $arr4, $n, $x) {     $count = 0;      // generate all triplets from the      // 1st three arrays     for ($i = 0; $i < $n; $i++)         for ($j = 0; $j < $n; $j++)             for ($k = 0; $k < $n; $k++)             {                  // calculate the sum of elements in                 // the triplet so generated                 $T = $arr1[$i] + $arr2[$j] + $arr3[$k];                  // check if 'x-T' is present in 4th                 // array or not                 if (isPresent($arr4, 0, $n, $x - $T))                      // increment count                     $count++;             }      // required count of quadruples     return $count; }  // Driver Code  // four sorted arrays each of size 'n' $arr1 = array(1, 4, 5, 6); $arr2 = array(2, 3, 7, 8); $arr3 = array(1, 4, 6, 10); $arr4 = array(2, 4, 7, 8);  $n = sizeof($arr1); $x = 30; echo "Count = " . countQuadruples($arr1, $arr2, $arr3,                                   $arr4, $n, $x);  // This code is contributed  // by Akanksha Rai ?> 
JavaScript
<script>     // Javascript implementation to count quadruples from     // four sorted arrays whose sum is equal to a     // given value x          // find the 'value' in the given array 'arr[]'     // binary search technique is applied     function isPresent(arr, low, high, value)     {         while (low <= high)         {             let mid = parseInt((low + high) / 2, 10);               // 'value' found             if (arr[mid] == value)                 return true;             else if (arr[mid] > value)                 high = mid - 1;             else                 low = mid + 1;         }           // 'value' not found         return false;     }       // function to count all quadruples from four     // sorted arrays whose sum is equal to a given value x     function countQuadruples(arr1, arr2, arr3, arr4, n, x)     {         let count = 0;           // generate all triplets from the 1st three arrays         for (let i = 0; i < n; i++)             for (let j = 0; j < n; j++)                 for (let k = 0; k < n; k++)                 {                       // calculate the sum of elements in                     // the triplet so generated                     let T = arr1[i] + arr2[j] + arr3[k];                       // check if 'x-T' is present in 4th                     // array or not                     if (isPresent(arr4, 0, n-1, x - T))                               // increment count                         count++;                 }           // required count of quadruples         return count;     }          // four sorted arrays each of size 'n'     let arr1 = [ 1, 4, 5, 6 ];     let arr2 = [ 2, 3, 7, 8 ];     let arr3 = [ 1, 4, 6, 10 ];     let arr4 = [ 2, 4, 7, 8 ];     let n = 4;     let x = 30;     document.write( "Count = " + countQuadruples(arr1, arr2, arr3, arr4, n, x));      </script> 

Output:  

Count = 4

Time Complexity: O(n3logn) 
Auxiliary Space: O(1)
 

Method 3 (Use of two pointers): Generate all pairs from the 1st two arrays. For each pair so generated, find the sum of elements in the pair. Let it be p_sum. For each p_sum, count pairs from the 3rd and 4th sorted array with sum equal to (x - p_sum). Accumulate these count in the total_count of quadruples. 

C++
// C++ implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x #include <bits/stdc++.h>  using namespace std;  // count pairs from the two sorted array whose sum // is equal to the given 'value' int countPairs(int arr1[], int arr2[], int n, int value) {     int count = 0;     int l = 0, r = n - 1;      // traverse 'arr1[]' from left to right     // traverse 'arr2[]' from right to left     while (l < n & amp; &r >= 0) {         int sum = arr1[l] + arr2[r];          // if the 'sum' is equal to 'value', then         // increment 'l', decrement 'r' and         // increment 'count'         if (sum == value) {             l++, r--;             count++;         }          // if the 'sum' is greater than 'value', then         // decrement r         else if (sum > value)             r--;          // else increment l         else             l++;     }      // required count of pairs     return count; }  // function to count all quadruples from four sorted arrays // whose sum is equal to a given value x int countQuadruples(int arr1[], int arr2[], int arr3[],                     int arr4[], int n, int x) {     int count = 0;      // generate all pairs from arr1[] and arr2[]     for (int i = 0; i < n; i++)         for (int j = 0; j < n; j++) {             // calculate the sum of elements in             // the pair so generated             int p_sum = arr1[i] + arr2[j];              // count pairs in the 3rd and 4th array             // having value 'x-p_sum' and then             // accumulate it to 'count'             count += countPairs(arr3, arr4, n, x - p_sum);         }      // required count of quadruples     return count; }  // Driver program to test above int main() {     // four sorted arrays each of size 'n'     int arr1[] = { 1, 4, 5, 6 };     int arr2[] = { 2, 3, 7, 8 };     int arr3[] = { 1, 4, 6, 10 };     int arr4[] = { 2, 4, 7, 8 };      int n = sizeof(arr1) / sizeof(arr1[0]);     int x = 30;     cout << "Count = "          << countQuadruples(arr1, arr2, arr3,                             arr4, n, x);     return 0; } 
Java
// Java implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x  class GFG {  // count pairs from the two sorted array whose sum // is equal to the given 'value' static int countPairs(int arr1[], int arr2[], int n, int value) {     int count = 0;     int l = 0, r = n - 1;       // traverse 'arr1[]' from left to right     // traverse 'arr2[]' from right to left     while (l < n & r >= 0) {         int sum = arr1[l] + arr2[r];           // if the 'sum' is equal to 'value', then         // increment 'l', decrement 'r' and         // increment 'count'         if (sum == value) {             l++; r--;             count++;         }           // if the 'sum' is greater than 'value', then         // decrement r         else if (sum > value)             r--;           // else increment l         else             l++;     }       // required count of pairs     return count; }   // function to count all quadruples from four sorted arrays // whose sum is equal to a given value x static int countQuadruples(int arr1[], int arr2[], int arr3[],                     int arr4[], int n, int x) {     int count = 0;       // generate all pairs from arr1[] and arr2[]     for (int i = 0; i < n; i++)         for (int j = 0; j < n; j++) {             // calculate the sum of elements in             // the pair so generated             int p_sum = arr1[i] + arr2[j];               // count pairs in the 3rd and 4th array             // having value 'x-p_sum' and then             // accumulate it to 'count'             count += countPairs(arr3, arr4, n, x - p_sum);         }       // required count of quadruples     return count; } // Driver program to test above     static public void main(String[] args) {         // four sorted arrays each of size 'n'         int arr1[] = {1, 4, 5, 6};         int arr2[] = {2, 3, 7, 8};         int arr3[] = {1, 4, 6, 10};         int arr4[] = {2, 4, 7, 8};          int n = arr1.length;         int x = 30;         System.out.println("Count = "                 + countQuadruples(arr1, arr2, arr3, arr4, n, x));     } }  // This code is contributed by PrinciRaj19992 
Python3
# Python3 implementation to  # count quadruples from four  # sorted arrays whose sum is # equal to a given value x # count pairs from the two  # sorted array whose sum # is equal to the given 'value' def countPairs(arr1, arr2,                 n, value):         count = 0      l = 0      r = n - 1           # traverse 'arr1[]' from       # left to right      # traverse 'arr2[]' from       # right to left      while (l < n and r >= 0):           sum = arr1[l] + arr2[r]                      # if the 'sum' is equal            # to 'value', then           # increment 'l', decrement            # 'r' and increment 'count'           if (sum == value):                l += 1                r -= 1                count += 1                               # if the 'sum' is greater                # than 'value', then decrement r           elif (sum > value):                r -= 1                          # else increment l           else:                l += 1                     # required count of pairs      # print(count)      return count  # function to count all quadruples # from four sorted arrays whose sum  # is equal to a given value x def countQuadruples(arr1, arr2,                      arr3, arr4,                      n, x):      count = 0           # generate all pairs from      # arr1[] and arr2[]      for i in range(0, n):           for j in range(0, n):                             # calculate the sum of                 # elements in the pair                 # so generated                p_sum = arr1[i] + arr2[j]                                 # count pairs in the 3rd                 # and 4th array having                 # value 'x-p_sum' and then                # accumulate it to 'count                count += int(countPairs(arr3, arr4,                                        n, x - p_sum))      # required count of quadruples      return count  # Driver code arr1 = [1, 4, 5, 6] arr2 = [2, 3, 7, 8] arr3 = [1, 4, 6, 10] arr4 = [2, 4, 7, 8] n = len(arr1) x = 30 print("Count = ", countQuadruples(arr1, arr2,                                    arr3, arr4,                                    n, x))  # This code is contributed by Stream_Cipher 
C#
     // C# implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x  using System; public class GFG {      // count pairs from the two sorted array whose sum     // is equal to the given 'value'     static int countPairs(int []arr1, int []arr2, int n, int value)     {         int count = 0;         int l = 0, r = n - 1;          // traverse 'arr1[]' from left to right         // traverse 'arr2[]' from right to left         while (l < n & r >= 0) {             int sum = arr1[l] + arr2[r];              // if the 'sum' is equal to 'value', then             // increment 'l', decrement 'r' and             // increment 'count'             if (sum == value) {                 l++; r--;                 count++;             }              // if the 'sum' is greater than 'value', then             // decrement r             else if (sum > value)                 r--;              // else increment l             else                 l++;         }          // required count of pairs         return count;     }      // function to count all quadruples from four sorted arrays     // whose sum is equal to a given value x     static int countQuadruples(int []arr1, int []arr2, int []arr3,                         int []arr4, int n, int x)     {         int count = 0;          // generate all pairs from arr1[] and arr2[]         for (int i = 0; i < n; i++)             for (int j = 0; j < n; j++) {                 // calculate the sum of elements in                 // the pair so generated                 int p_sum = arr1[i] + arr2[j];                  // count pairs in the 3rd and 4th array                 // having value 'x-p_sum' and then                 // accumulate it to 'count'                 count += countPairs(arr3, arr4, n, x - p_sum);             }          // required count of quadruples         return count;     }     // Driver program to test above     static public void Main() {         // four sorted arrays each of size 'n'         int []arr1 = {1, 4, 5, 6};         int []arr2 = {2, 3, 7, 8};         int []arr3 = {1, 4, 6, 10};         int []arr4 = {2, 4, 7, 8};           int n = arr1.Length;         int x = 30;         Console.Write("Count = "                 + countQuadruples(arr1, arr2, arr3, arr4, n, x));     } }   // This code is contributed by PrinciRaj19992 
JavaScript
<script> // Javascript implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x  // count pairs from the two sorted array whose sum // is equal to the given 'value' function countPairs(arr1,arr2,n,value) {     let count = 0;     let l = 0, r = n - 1;        // traverse 'arr1[]' from left to right     // traverse 'arr2[]' from right to left     while (l < n & r >= 0) {         let sum = arr1[l] + arr2[r];            // if the 'sum' is equal to 'value', then         // increment 'l', decrement 'r' and         // increment 'count'         if (sum == value) {             l++; r--;             count++;         }            // if the 'sum' is greater than 'value', then         // decrement r         else if (sum > value)             r--;            // else increment l         else             l++;     }        // required count of pairs     return count; }  // function to count all quadruples from four sorted arrays // whose sum is equal to a given value x function countQuadruples(arr1,arr2,arr3,arr4,n,x) {     let count = 0;        // generate all pairs from arr1[] and arr2[]     for (let i = 0; i < n; i++)         for (let j = 0; j < n; j++) {             // calculate the sum of elements in             // the pair so generated             let p_sum = arr1[i] + arr2[j];                // count pairs in the 3rd and 4th array             // having value 'x-p_sum' and then             // accumulate it to 'count'             count += countPairs(arr3, arr4, n, x - p_sum);         }        // required count of quadruples     return count; }  // Driver program to test above // four sorted arrays each of size 'n' let arr1=[1, 4, 5, 6]; let arr2=[2, 3, 7, 8]; let arr3=[1, 4, 6, 10]; let arr4=[2, 4, 7, 8]; let n = arr1.length; let x = 30; document.write("Count = "                 + countQuadruples(arr1, arr2, arr3, arr4, n, x));  // This code is contributed by ab2127 </script> 

Output:  

Count = 4

Time Complexity: O(n3) 
Auxiliary Space: O(1)
 

Method 4 Efficient Approach(Hashing): Create a hash table where (key, value) tuples are represented as (sum, frequency) tuples. Here the sum are obtained from the pairs of 1st and 2nd array and their frequency count is maintained in the hash table. Hash table is implemented using unordered_map in C++. Now, generate all pairs from the 3rd and 4th array. For each pair so generated, find the sum of elements in the pair. Let it be p_sum. For each p_sum, check whether (x - p_sum) exists in the hash table or not. If it exists, then add the frequency of (x - p_sum) to the count of quadruples.  

C++
// C++ implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x #include <bits/stdc++.h>  using namespace std;  // function to count all quadruples from four sorted // arrays whose sum is equal to a given value x int countQuadruples(int arr1[], int arr2[], int arr3[],                     int arr4[], int n, int x) {     int count = 0;      // unordered_map 'um' implemented as hash table     // for <sum, frequency> tuples     unordered_map<int, int> um;      // count frequency of each sum obtained from the     // pairs of arr1[] and arr2[] and store them in 'um'     for (int i = 0; i < n; i++)         for (int j = 0; j < n; j++)             um[arr1[i] + arr2[j]]++;      // generate pair from arr3[] and arr4[]     for (int k = 0; k < n; k++)         for (int l = 0; l < n; l++) {              // calculate the sum of elements in             // the pair so generated             int p_sum = arr3[k] + arr4[l];              // if 'x-p_sum' is present in 'um' then             // add frequency of 'x-p_sum' to 'count'             if (um.find(x - p_sum) != um.end())                 count += um[x - p_sum];         }      // required count of quadruples     return count; }  // Driver program to test above int main() {     // four sorted arrays each of size 'n'     int arr1[] = { 1, 4, 5, 6 };     int arr2[] = { 2, 3, 7, 8 };     int arr3[] = { 1, 4, 6, 10 };     int arr4[] = { 2, 4, 7, 8 };      int n = sizeof(arr1) / sizeof(arr1[0]);     int x = 30;     cout << "Count = "          << countQuadruples(arr1, arr2, arr3, arr4, n, x);     return 0; } 
Java
// Java implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x import java.util.*;  class GFG  {  // function to count all quadruples from four sorted // arrays whose sum is equal to a given value x static int countQuadruples(int arr1[], int arr2[], int arr3[],                                     int arr4[], int n, int x) {     int count = 0;      // unordered_map 'um' implemented as hash table     // for <sum, frequency> tuples     Map<Integer,Integer> m = new HashMap<>();          // count frequency of each sum obtained from the     // pairs of arr1[] and arr2[] and store them in 'um'     for (int i = 0; i < n; i++)         for (int j = 0; j < n; j++)             if(m.containsKey(arr1[i] + arr2[j]))                 m.put((arr1[i] + arr2[j]), m.get((arr1[i] + arr2[j]))+1);             else                 m.put((arr1[i] + arr2[j]), 1);                      // generate pair from arr3[] and arr4[]     for (int k = 0; k < n; k++)         for (int l = 0; l < n; l++)         {              // calculate the sum of elements in             // the pair so generated             int p_sum = arr3[k] + arr4[l];              // if 'x-p_sum' is present in 'um' then             // add frequency of 'x-p_sum' to 'count'             if (m.containsKey(x - p_sum))                 count += m.get(x - p_sum);         }      // required count of quadruples     return count; }  // Driver program to test above public static void main(String[] args) {     // four sorted arrays each of size 'n'     int arr1[] = { 1, 4, 5, 6 };     int arr2[] = { 2, 3, 7, 8 };     int arr3[] = { 1, 4, 6, 10 };     int arr4[] = { 2, 4, 7, 8 };      int n = arr1.length;     int x = 30;     System.out.println("Count = "         + countQuadruples(arr1, arr2, arr3, arr4, n, x)); } }  // This code has been contributed by 29AjayKumar 
Python3
# Python implementation to count quadruples from # four sorted arrays whose sum is equal to a # given value x  # function to count all quadruples from four sorted # arrays whose sum is equal to a given value x def countQuadruples(arr1, arr2, arr3, arr4, n, x):     count = 0          # unordered_map 'um' implemented as hash table     # for <sum, frequency> tuples        m = {}          # count frequency of each sum obtained from the     # pairs of arr1[] and arr2[] and store them in 'um'     for i in range(n):         for j in range(n):             if (arr1[i] + arr2[j]) in m:                 m[arr1[i] + arr2[j]] += 1             else:                 m[arr1[i] + arr2[j]] = 1          # generate pair from arr3[] and arr4[]     for k in range(n):         for l in range(n):                          # calculate the sum of elements in             # the pair so generated             p_sum = arr3[k] + arr4[l]                          # if 'x-p_sum' is present in 'um' then             # add frequency of 'x-p_sum' to 'count'             if (x - p_sum) in m:                 count += m[x - p_sum]          # required count of quadruples     return count  # Driver program to test above  # four sorted arrays each of size 'n' arr1 = [1, 4, 5, 6] arr2 = [2, 3, 7, 8 ] arr3 = [1, 4, 6, 10] arr4 = [2, 4, 7, 8 ]  n = len(arr1) x = 30 print("Count =", countQuadruples(arr1, arr2, arr3, arr4, n, x))  # This code is contributed by avanitrachhadiya2155 
C#
// C# implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x using System;  using System.Collections.Generic;  class GFG  {   // function to count all quadruples from four sorted // arrays whose sum is equal to a given value x static int countQuadruples(int []arr1, int []arr2, int []arr3,                                     int []arr4, int n, int x) {     int count = 0;       // unordered_map 'um' implemented as hash table     // for <sum, frequency> tuples     Dictionary<int,int> m = new Dictionary<int,int>();           // count frequency of each sum obtained from the     // pairs of arr1[] and arr2[] and store them in 'um'     for (int i = 0; i < n; i++)         for (int j = 0; j < n; j++)             if(m.ContainsKey(arr1[i] + arr2[j])){                 var val = m[arr1[i] + arr2[j]];                 m.Remove(arr1[i] + arr2[j]);                 m.Add((arr1[i] + arr2[j]), val+1);             }             else                 m.Add((arr1[i] + arr2[j]), 1);                       // generate pair from arr3[] and arr4[]     for (int k = 0; k < n; k++)         for (int l = 0; l < n; l++)         {               // calculate the sum of elements in             // the pair so generated             int p_sum = arr3[k] + arr4[l];               // if 'x-p_sum' is present in 'um' then             // add frequency of 'x-p_sum' to 'count'             if (m.ContainsKey(x - p_sum))                 count += m[x - p_sum];         }       // required count of quadruples     return count; }   // Driver code public static void Main(String[] args) {     // four sorted arrays each of size 'n'     int []arr1 = { 1, 4, 5, 6 };     int []arr2 = { 2, 3, 7, 8 };     int []arr3 = { 1, 4, 6, 10 };     int []arr4 = { 2, 4, 7, 8 };       int n = arr1.Length;     int x = 30;     Console.WriteLine("Count = "         + countQuadruples(arr1, arr2, arr3, arr4, n, x)); } }  // This code has been contributed by 29AjayKumar 
JavaScript
<script> // Javascript implementation to count quadruples from // four sorted arrays whose sum is equal to a // given value x  // function to count all quadruples from four sorted // arrays whose sum is equal to a given value x function countQuadruples(arr1,arr2,arr3,arr4,n,X) {     let count = 0;       // unordered_map 'um' implemented as hash table     // for <sum, frequency> tuples     let m = new Map();           // count frequency of each sum obtained from the     // pairs of arr1[] and arr2[] and store them in 'um'     for (let i = 0; i < n; i++)         for (let j = 0; j < n; j++)             if(m.has(arr1[i] + arr2[j]))                 m.set((arr1[i] + arr2[j]), m.get((arr1[i] + arr2[j]))+1);             else                 m.set((arr1[i] + arr2[j]), 1);                       // generate pair from arr3[] and arr4[]     for (let k = 0; k < n; k++)         for (let l = 0; l < n; l++)         {               // calculate the sum of elements in             // the pair so generated             let p_sum = arr3[k] + arr4[l];               // if 'x-p_sum' is present in 'um' then             // add frequency of 'x-p_sum' to 'count'             if (m.has(x - p_sum))                 count += m.get(x - p_sum);         }       // required count of quadruples     return count; }  // Driver program to test above // four sorted arrays each of size 'n' let arr1 = [ 1, 4, 5, 6 ]; let arr2 = [ 2, 3, 7, 8 ]; let arr3 = [ 1, 4, 6, 10 ]; let arr4 = [ 2, 4, 7, 8 ];  let n = arr1.length; let x = 30; document.write("Count = "                    + countQuadruples(arr1, arr2, arr3, arr4, n, x));   // This code is contributed by unknown2108 </script> 

Output:  

Count = 4

Time Complexity: O(n2) 
Auxiliary Space: O(n2) 


 
count pairs in the 3rd and 4th sorted array with sum equal to (x - p_sum) 


Next Article
Sort elements by frequency | Set 4 (Efficient approach using hash)

A

Ayush
Improve
Article Tags :
  • Searching
  • Sorting
  • Hash
  • DSA
  • Binary Search
Practice Tags :
  • Binary Search
  • Hash
  • Searching
  • Sorting

Similar Reads

    Hashing in Data Structure
    Hashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
    3 min read
    Introduction to Hashing
    Hashing refers to the process of generating a small sized output (that can be used as index in a table) from an input of typically large and variable size. Hashing uses mathematical formulas known as hash functions to do the transformation. This technique determines an index or location for the stor
    7 min read
    What is Hashing?
    Hashing refers to the process of generating a fixed-size output from an input of variable size using the mathematical formulas known as hash functions. This technique determines an index or location for the storage of an item in a data structure. Need for Hash data structureThe amount of data on the
    3 min read
    Index Mapping (or Trivial Hashing) with negatives allowed
    Index Mapping (also known as Trivial Hashing) is a simple form of hashing where the data is directly mapped to an index in a hash table. The hash function used in this method is typically the identity function, which maps the input data to itself. In this case, the key of the data is used as the ind
    7 min read
    Separate Chaining Collision Handling Technique in Hashing
    Separate Chaining is a collision handling technique. Separate chaining is one of the most popular and commonly used techniques in order to handle collisions. In this article, we will discuss about what is Separate Chain collision handling technique, its advantages, disadvantages, etc.There are mainl
    3 min read
    Open Addressing Collision Handling technique in Hashing
    Open Addressing is a method for handling collisions. In Open Addressing, all elements are stored in the hash table itself. So at any point, the size of the table must be greater than or equal to the total number of keys (Note that we can increase table size by copying old data if needed). This appro
    7 min read
    Double Hashing
    Double hashing is a collision resolution technique used in hash tables. It works by using two hash functions to compute two different hash values for a given key. The first hash function is used to compute the initial hash value, and the second hash function is used to compute the step size for the
    15+ min read
    Load Factor and Rehashing
    Prerequisites: Hashing Introduction and Collision handling by separate chaining How hashing works: For insertion of a key(K) - value(V) pair into a hash map, 2 steps are required: K is converted into a small integer (called its hash code) using a hash function.The hash code is used to find an index
    15+ min read

    Easy problems on Hashing

    Check if an array is subset of another array
    Given two arrays a[] and b[] of size m and n respectively, the task is to determine whether b[] is a subset of a[]. Both arrays are not sorted, and elements are distinct.Examples: Input: a[] = [11, 1, 13, 21, 3, 7], b[] = [11, 3, 7, 1] Output: trueInput: a[]= [1, 2, 3, 4, 5, 6], b = [1, 2, 4] Output
    13 min read
    Union and Intersection of two Linked List using Hashing
    Given two singly Linked Lists, create union and intersection lists that contain the union and intersection of the elements present in the given lists. Each of the two linked lists contains distinct node values.Note: The order of elements in output lists doesn’t matter. Examples:Input:head1 : 10 -
    10 min read
    Two Sum - Pair with given Sum
    Given an array arr[] of n integers and a target value, the task is to find whether there is a pair of elements in the array whose sum is equal to target. This problem is a variation of 2Sum problem.Examples: Input: arr[] = [0, -1, 2, -3, 1], target = -2Output: trueExplanation: There is a pair (1, -3
    15+ min read
    Max Distance Between Two Occurrences
    Given an array arr[], the task is to find the maximum distance between two occurrences of any element. If no element occurs twice, return 0.Examples: Input: arr = [1, 1, 2, 2, 2, 1]Output: 5Explanation: distance for 1 is: 5-0 = 5, distance for 2 is: 4-2 = 2, So max distance is 5.Input : arr[] = [3,
    8 min read
    Most frequent element in an array
    Given an array, the task is to find the most frequent element in it. If there are multiple elements that appear a maximum number of times, return the maximum element.Examples: Input : arr[] = [1, 3, 2, 1, 4, 1]Output : 1Explanation: 1 appears three times in array which is maximum frequency.Input : a
    10 min read
    Only Repeating From 1 To n-1
    Given an array arr[] of size n filled with numbers from 1 to n-1 in random order. The array has only one repetitive element. The task is to find the repetitive element.Examples:Input: arr[] = [1, 3, 2, 3, 4]Output: 3Explanation: The number 3 is the only repeating element.Input: arr[] = [1, 5, 1, 2,
    15+ min read
    Check for Disjoint Arrays or Sets
    Given two arrays a and b, check if they are disjoint, i.e., there is no element common between both the arrays.Examples: Input: a[] = {12, 34, 11, 9, 3}, b[] = {2, 1, 3, 5} Output: FalseExplanation: 3 is common in both the arrays.Input: a[] = {12, 34, 11, 9, 3}, b[] = {7, 2, 1, 5} Output: True Expla
    11 min read
    Non-overlapping sum of two sets
    Given two arrays A[] and B[] of size n. It is given that both array individually contains distinct elements. We need to find the sum of all elements that are not common.Examples: Input : A[] = {1, 5, 3, 8} B[] = {5, 4, 6, 7}Output : 291 + 3 + 4 + 6 + 7 + 8 = 29Input : A[] = {1, 5, 3, 8} B[] = {5, 1,
    9 min read
    Check if two arrays are equal or not
    Given two arrays, a and b of equal length. The task is to determine if the given arrays are equal or not. Two arrays are considered equal if:Both arrays contain the same set of elements.The arrangements (or permutations) of elements may be different.If there are repeated elements, the counts of each
    6 min read
    Find missing elements of a range
    Given an array, arr[0..n-1] of distinct elements and a range [low, high], find all numbers that are in a range, but not the array. The missing elements should be printed in sorted order.Examples: Input: arr[] = {10, 12, 11, 15}, low = 10, high = 15Output: 13, 14Input: arr[] = {1, 14, 11, 51, 15}, lo
    15+ min read
    Minimum Subsets with Distinct Elements
    You are given an array of n-element. You have to make subsets from the array such that no subset contain duplicate elements. Find out minimum number of subset possible.Examples : Input : arr[] = {1, 2, 3, 4}Output :1Explanation : A single subset can contains all values and all values are distinct.In
    9 min read
    Remove minimum elements such that no common elements exist in two arrays
    Given two arrays arr1[] and arr2[] consisting of n and m elements respectively. The task is to find the minimum number of elements to remove from each array such that intersection of both arrays becomes empty and both arrays become mutually exclusive.Examples: Input: arr[] = { 1, 2, 3, 4}, arr2[] =
    8 min read
    2 Sum - Count pairs with given sum
    Given an array arr[] of n integers and a target value, the task is to find the number of pairs of integers in the array whose sum is equal to target.Examples: Input: arr[] = {1, 5, 7, -1, 5}, target = 6Output: 3Explanation: Pairs with sum 6 are (1, 5), (7, -1) & (1, 5). Input: arr[] = {1, 1, 1,
    9 min read
    Count quadruples from four sorted arrays whose sum is equal to a given value x
    Given four sorted arrays each of size n of distinct elements. Given a value x. The problem is to count all quadruples(group of four numbers) from all the four arrays whose sum is equal to x.Note: The quadruple has an element from each of the four arrays. Examples: Input : arr1 = {1, 4, 5, 6}, arr2 =
    15+ min read
    Sort elements by frequency | Set 4 (Efficient approach using hash)
    Print the elements of an array in the decreasing frequency if 2 numbers have the same frequency then print the one which came first. Examples: Input : arr[] = {2, 5, 2, 8, 5, 6, 8, 8} Output : arr[] = {8, 8, 8, 2, 2, 5, 5, 6} Input : arr[] = {2, 5, 2, 6, -1, 9999999, 5, 8, 8, 8} Output : arr[] = {8,
    12 min read
    Find all pairs (a, b) in an array such that a % b = k
    Given an array with distinct elements, the task is to find the pairs in the array such that a % b = k, where k is a given integer. You may assume that a and b are in small range Examples : Input : arr[] = {2, 3, 5, 4, 7} k = 3Output : (7, 4), (3, 4), (3, 5), (3, 7)7 % 4 = 33 % 4 = 33 % 5 = 33 % 7 =
    15 min read
    Group words with same set of characters
    Given a list of words with lower cases. Implement a function to find all Words that have the same unique character set. Example: Input: words[] = { "may", "student", "students", "dog", "studentssess", "god", "cat", "act", "tab", "bat", "flow", "wolf", "lambs", "amy", "yam", "balms", "looped", "poodl
    8 min read
    k-th distinct (or non-repeating) element among unique elements in an array.
    Given an integer array arr[], print kth distinct element in this array. The given array may contain duplicates and the output should print the k-th element among all unique elements. If k is more than the number of distinct elements, print -1.Examples:Input: arr[] = {1, 2, 1, 3, 4, 2}, k = 2Output:
    7 min read

    Intermediate problems on Hashing

    Find Itinerary from a given list of tickets
    Given a list of tickets, find the itinerary in order using the given list.Note: It may be assumed that the input list of tickets is not cyclic and there is one ticket from every city except the final destination.Examples:Input: "Chennai" -> "Bangalore" "Bombay" -> "Delhi" "Goa" -> "Chennai"
    11 min read
    Find number of Employees Under every Manager
    Given a 2d matrix of strings arr[][] of order n * 2, where each array arr[i] contains two strings, where the first string arr[i][0] is the employee and arr[i][1] is his manager. The task is to find the count of the number of employees under each manager in the hierarchy and not just their direct rep
    9 min read
    Longest Subarray With Sum Divisible By K
    Given an arr[] containing n integers and a positive integer k, he problem is to find the longest subarray's length with the sum of the elements divisible by k.Examples:Input: arr[] = [2, 7, 6, 1, 4, 5], k = 3Output: 4Explanation: The subarray [7, 6, 1, 4] has sum = 18, which is divisible by 3.Input:
    10 min read
    Longest Subarray with 0 Sum
    Given an array arr[] of size n, the task is to find the length of the longest subarray with sum equal to 0.Examples:Input: arr[] = {15, -2, 2, -8, 1, 7, 10, 23}Output: 5Explanation: The longest subarray with sum equals to 0 is {-2, 2, -8, 1, 7}Input: arr[] = {1, 2, 3}Output: 0Explanation: There is n
    10 min read
    Longest Increasing consecutive subsequence
    Given N elements, write a program that prints the length of the longest increasing consecutive subsequence. Examples: Input : a[] = {3, 10, 3, 11, 4, 5, 6, 7, 8, 12} Output : 6 Explanation: 3, 4, 5, 6, 7, 8 is the longest increasing subsequence whose adjacent element differs by one. Input : a[] = {6
    10 min read
    Count Distinct Elements In Every Window of Size K
    Given an array arr[] of size n and an integer k, return the count of distinct numbers in all windows of size k. Examples: Input: arr[] = [1, 2, 1, 3, 4, 2, 3], k = 4Output: [3, 4, 4, 3]Explanation: First window is [1, 2, 1, 3], count of distinct numbers is 3. Second window is [2, 1, 3, 4] count of d
    10 min read
    Design a data structure that supports insert, delete, search and getRandom in constant time
    Design a data structure that supports the following operations in O(1) time.insert(x): Inserts an item x to the data structure if not already present.remove(x): Removes item x from the data structure if present. search(x): Searches an item x in the data structure.getRandom(): Returns a random elemen
    5 min read
    Subarray with Given Sum - Handles Negative Numbers
    Given an unsorted array of integers, find a subarray that adds to a given number. If there is more than one subarray with the sum of the given number, print any of them.Examples: Input: arr[] = {1, 4, 20, 3, 10, 5}, sum = 33Output: Sum found between indexes 2 and 4Explanation: Sum of elements betwee
    13 min read
    Implementing our Own Hash Table with Separate Chaining in Java
    All data structure has their own special characteristics, for example, a BST is used when quick searching of an element (in log(n)) is required. A heap or a priority queue is used when the minimum or maximum element needs to be fetched in constant time. Similarly, a hash table is used to fetch, add
    10 min read
    Implementing own Hash Table with Open Addressing Linear Probing
    In Open Addressing, all elements are stored in the hash table itself. So at any point, size of table must be greater than or equal to total number of keys (Note that we can increase table size by copying old data if needed).Insert(k) - Keep probing until an empty slot is found. Once an empty slot is
    13 min read
    Maximum possible difference of two subsets of an array
    Given an array of n-integers. The array may contain repetitive elements but the highest frequency of any element must not exceed two. You have to make two subsets such that the difference of the sum of their elements is maximum and both of them jointly contain all elements of the given array along w
    15+ min read
    Sorting using trivial hash function
    We have read about various sorting algorithms such as heap sort, bubble sort, merge sort and others. Here we will see how can we sort N elements using a hash array. But this algorithm has a limitation. We can sort only those N elements, where the value of elements is not large (typically not above 1
    15+ min read
    Smallest subarray with k distinct numbers
    We are given an array consisting of n integers and an integer k. We need to find the smallest subarray [l, r] (both l and r are inclusive) such that there are exactly k different numbers. If no such subarray exists, print -1 and If multiple subarrays meet the criteria, return the one with the smalle
    14 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences