Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Questions on Array
  • Practice Array
  • MCQs on Array
  • Tutorial on Array
  • Types of Arrays
  • Array Operations
  • Subarrays, Subsequences, Subsets
  • Reverse Array
  • Static Vs Arrays
  • Array Vs Linked List
  • Array | Range Queries
  • Advantages & Disadvantages
Open In App
Next Article:
Count sub-arrays whose product is divisible by k
Next article icon

Count pairs in array whose sum is divisible by K

Last Updated : 25 Dec, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given an array A[] and positive integer K, the task is to count the total number of pairs in the array whose sum is divisible by K. 
Note: This question is a generalized version of this 

Examples: 

Input : A[] = {2, 2, 1, 7, 5, 3}, K = 4 Output : 5 Explanation :  There are five pairs possible whose sum is divisible by '4' i.e., (2, 2),  (1, 7), (7, 5), (1, 3) and (5, 3)  Input : A[] = {5, 9, 36, 74, 52, 31, 42}, K = 3 Output : 7
Recommended Practice
Count pairs in array divisible by K
Try It!

Naive Approach: The simplest approach is to iterate through every pair of the array but using two nested for loops and count those pairs whose sum is divisible by ‘K’. The time complexity of this approach is O(N2).

 Below is the implementation of the above approach:

C++




// C++ Program to count pairs
// whose sum divisible by 'K'
#include <bits/stdc++.h>
using namespace std;
 
int countKdivPairs(int A[], int n, int K)
{
    // variable for storing answer
    int count = 0;
 
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // if pair sum is divisible
            if ((A[i] + A[j]) % K == 0)
 
                // Increment count
                count++;
        }
    }
 
    return count;
}
 
// Driver code
int main()
{
 
    int A[] = { 2, 2, 1, 7, 5, 3 };
    int n = sizeof(A) / sizeof(A[0]);
    int K = 4;
 
    // Function call
    cout << countKdivPairs(A, n, K);
 
    return 0;
}
 
 

Java




/*package whatever //do not write package name here */
import java.io.*;
class GFG {
 
  static int countKdivPairs(int[] A, int n, int K)
  {
 
    // variable for storing answer
    int count = 0;
 
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
 
        // if pair sum is divisible
        if ((A[i] + A[j]) % K == 0)
 
          // Increment count
          count++;
      }
    }
 
    return count;
  }
 
  public static void main (String[] args)
  {
    int[] A = { 2, 2, 1, 7, 5, 3 };
    int n = A.length;
    int K = 4;
 
    // Function call
    System.out.println(countKdivPairs(A, n, K));
  }
}
 
// This code is contributed by utkarshshirode02
 
 

C#




// C# Program to count pairs
// whose sum divisible by 'K'
using System;
class GFG {
 
  static int countKdivPairs(int[] A, int n, int K)
  {
     
    // variable for storing answer
    int count = 0;
 
    for (int i = 0; i < n; i++) {
      for (int j = i + 1; j < n; j++) {
 
        // if pair sum is divisible
        if ((A[i] + A[j]) % K == 0)
 
          // Increment count
          count++;
      }
    }
 
    return count;
  }
 
  // Driver code
  public static void Main()
  {
 
    int[] A = { 2, 2, 1, 7, 5, 3 };
    int n = A.Length;
    int K = 4;
 
    // Function call
    Console.Write(countKdivPairs(A, n, K));
  }
}
 
// This code is contributed by Samim Hossain Mondal.
 
 

Javascript




// Javascript Program to count pairs
// whose sum divisible by 'K'
 
function countKdivPairs(A, n, K)
{
    // variable for storing answer
    let count = 0
 
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
 
            // if pair sum is divisible
            if ((A[i] + A[j]) % K == 0)
 
                // Increment count
                count++
        }
    }
 
    return count
}
 
// Driver code
let A = [ 2, 2, 1, 7, 5, 3 ]
let n = A.length
let K = 4
 
// Function call
console.log(countKdivPairs(A, n, K))
 
// This code is contributed by Samim Hossain Mondal.
 
 

Python3




# Python Program to count pairs
# whose sum divisible by 'K'
def countKdivPairs(A, n, K):
    count = 0
    for i in range(0, n):
        for j in range(i+1, n):
            if((A[i]+A[j]) % K==0):
                # Increment count
                count += 1
    return count
# Driver Code
 
A=[ 2, 2, 1, 7, 5, 3 ]
n = len(A)
K = 4
#Function call
print(countKdivPairs(A, n, K))
    
 
 
Output
5

Time complexity: O(N2), for using two nested loops.
Auxiliary Space: O(1), as constant space is used.

Efficient Approach: An efficient approach is to use Hashing technique. We will separate elements into buckets depending on their (value mod K). When a number is divided by K then the remainder may be 0, 1, 2, up to (k-1). So take an array to say freq[] of size K (initialized with Zero) and increase the value of freq[A[i]%K] so that we can calculate the number of values giving remainder j on division with K.

C++




// C++ Program to count pairs
// whose sum divisible by 'K'
#include <bits/stdc++.h>
using namespace std;
 
// Program to count pairs whose sum divisible
// by 'K'
int countKdivPairs(int A[], int n, int K)
{
    // Create a frequency array to count
    // occurrences of all remainders when
    // divided by K
    int freq[K] = { 0 };
 
    // Count occurrences of all remainders
    for (int i = 0; i < n; i++)
        ++freq[A[i] % K];
 
    // If both pairs are divisible by 'K'
    int sum = freq[0] * (freq[0] - 1) / 2;
 
    // count for all i and (k-i)
    // freq pairs
    for (int i = 1; i <= K / 2 && i != (K - i); i++)
        sum += freq[i] * freq[K - i];
    // If K is even
    if (K % 2 == 0)
        sum += (freq[K / 2] * (freq[K / 2] - 1) / 2);
    return sum;
}
 
// Driver code
int main()
{
 
    int A[] = { 2, 2, 1, 7, 5, 3 };
    int n = sizeof(A) / sizeof(A[0]);
    int K = 4;
    cout << countKdivPairs(A, n, K);
 
    return 0;
}
 
 

Java




// Java program to count pairs
// whose sum divisible by 'K'
import java.util.*;
 
class Count {
    public static int countKdivPairs(int A[], int n, int K)
    {
        // Create a frequency array to count
        // occurrences of all remainders when
        // divided by K
        int freq[] = new int[K];
 
        // Count occurrences of all remainders
        for (int i = 0; i < n; i++)
            ++freq[A[i] % K];
 
        // If both pairs are divisible by 'K'
        int sum = freq[0] * (freq[0] - 1) / 2;
 
        // count for all i and (k-i)
        // freq pairs
        for (int i = 1; i <= K / 2 && i != (K - i); i++)
            sum += freq[i] * freq[K - i];
        // If K is even
        if (K % 2 == 0)
            sum += (freq[K / 2] * (freq[K / 2] - 1) / 2);
        return sum;
    }
    public static void main(String[] args)
    {
        int A[] = { 2, 2, 1, 7, 5, 3 };
        int n = 6;
        int K = 4;
        System.out.print(countKdivPairs(A, n, K));
    }
}
 
 

Python3




# Python3 code to count pairs whose
# sum is divisible by 'K'
 
# Function to count pairs whose
# sum is divisible by 'K'
def countKdivPairs(A, n, K):
     
    # Create a frequency array to count
    # occurrences of all remainders when
    # divided by K
    freq = [0] * K
     
    # Count occurrences of all remainders
    for i in range(n):
        freq[A[i] % K]+= 1
         
    # If both pairs are divisible by 'K'
    sum = freq[0] * (freq[0] - 1) / 2;
     
    # count for all i and (k-i)
    # freq pairs
    i = 1
    while(i <= K//2 and i != (K - i) ):
        sum += freq[i] * freq[K-i]
        i+= 1
 
    # If K is even
    if( K % 2 == 0 ):
        sum += (freq[K//2] * (freq[K//2]-1)/2);
     
    return int(sum)
 
# Driver code
A = [2, 2, 1, 7, 5, 3]
n = len(A)
K = 4
print(countKdivPairs(A, n, K))
 
 

C#




// C# program to count pairs
// whose sum divisible by 'K'
using System;
 
class Count
{
    public static int countKdivPairs(int []A, int n, int K)
    {
        // Create a frequency array to count
        // occurrences of all remainders when
        // divided by K
        int []freq = new int[K];
 
        // Count occurrences of all remainders
        for (int i = 0; i < n; i++)
            ++freq[A[i] % K];
 
        // If both pairs are divisible by 'K'
        int sum = freq[0] * (freq[0] - 1) / 2;
 
        // count for all i and (k-i)
        // freq pairs
        for (int i = 1; i <= K / 2 && i != (K - i); i++)
            sum += freq[i] * freq[K - i];
             
        // If K is even
        if (K % 2 == 0)
            sum += (freq[K / 2] * (freq[K / 2] - 1) / 2);
        return sum;
    }
     
    // Driver code
    static public void Main ()
    {
        int []A = { 2, 2, 1, 7, 5, 3 };
        int n = 6;
        int K = 4;
        Console.WriteLine(countKdivPairs(A, n, K));
    }
}
 
// This code is contributed by akt_mit.
 
 

PHP




<?php
// PHP Program to count pairs
// whose sum divisible by 'K'
 
// Program to count pairs whose sum
// divisible by 'K'
function countKdivPairs($A, $n, $K)
{
     
    // Create a frequency array to count
    // occurrences of all remainders when
    // divided by K
    $freq = array_fill(0, $K, 0);
 
    // Count occurrences of all remainders
    for ($i = 0; $i < $n; $i++)
        ++$freq[$A[$i] % $K];
 
    // If both pairs are divisible by 'K'
    $sum = (int)($freq[0] * ($freq[0] - 1) / 2);
 
    // count for all i and (k-i)
    // freq pairs
    for ($i = 1; $i <= $K / 2 &&
                 $i != ($K - $i); $i++)
        $sum += $freq[$i] * $freq[$K - $i];
         
    // If K is even
    if ($K % 2 == 0)
        $sum += (int)($freq[(int)($K / 2)] *
                     ($freq[(int)($K / 2)] - 1) / 2);
    return $sum;
}
 
// Driver code
$A = array( 2, 2, 1, 7, 5, 3 );
$n = count($A);
$K = 4;
echo countKdivPairs($A, $n, $K);
 
// This code is contributed by mits
?>
 
 

Javascript




<script>
    // Javascript program to count pairs whose sum divisible by 'K'
     
    function countKdivPairs(A, n, K)
    {
        // Create a frequency array to count
        // occurrences of all remainders when
        // divided by K
        let freq = new Array(K);
        freq.fill(0);
  
        // Count occurrences of all remainders
        for (let i = 0; i < n; i++)
            ++freq[A[i] % K];
  
        // If both pairs are divisible by 'K'
        let sum = freq[0] * parseInt((freq[0] - 1) / 2, 10);
  
        // count for all i and (k-i)
        // freq pairs
        for (let i = 1; i <= K / 2 && i != (K - i); i++)
            sum += freq[i] * freq[K - i];
              
        // If K is even
        if (K % 2 == 0)
            sum += parseInt(freq[parseInt(K / 2, 10)] * (freq[parseInt(K / 2, 10)] - 1) / 2, 10);
        return sum;
    }
     
    let A = [ 2, 2, 1, 7, 5, 3 ];
    let n = 6;
    let K = 4;
    document.write(countKdivPairs(A, n, K));
         
</script>
 
 
Output
5

Time complexity: O(N) 
Auxiliary space: O(K), since K extra space has been taken.

https://www.youtube.com/watch?v=5UJvXcSUyT0



Next Article
Count sub-arrays whose product is divisible by k

C

Chandan_Agrawal
Improve
Article Tags :
  • Algorithms
  • Arrays
  • DSA
  • Mathematical
  • Arrays
  • Hash
  • Marketing
  • subarray
Practice Tags :
  • Algorithms
  • Arrays
  • Arrays
  • Hash
  • Mathematical

Similar Reads

  • Count pairs in array whose sum is divisible by 4
    Given a array if 'n' positive integers. Count number of pairs of integers in the array that have the sum divisible by 4. Examples : Input: {2, 2, 1, 7, 5}Output: 3Explanation:Only three pairs are possible whose sumis divisible by '4' i.e., (2, 2), (1, 7) and (7, 5)Input: {2, 2, 3, 5, 6}Output: 4Reco
    10 min read
  • Count pairs in Array whose product is divisible by K
    Given a array vec and an integer K, count the number of pairs (i, j) such that vec[i]*vec[j] is divisible by K where i<j. Examples: Input: vec = {1, 2, 3, 4, 5, 6}, K = 4Output: 6Explanation: The pairs of indices (0, 3), (1, 3), (2, 3), (3, 4), (3, 5) and (1, 5) satisfy the condition as their pro
    11 min read
  • Count of pairs in Array whose product is divisible by K
    Given an array A[] and positive integer K, the task is to count the total number of pairs in the array whose product is divisible by K. Examples : Input: A[] = [1, 2, 3, 4, 5], K = 2Output: 7Explanation: The 7 pairs of indices whose corresponding products are divisible by 2 are(0, 1), (0, 3), (1, 2)
    9 min read
  • Count sub-arrays whose product is divisible by k
    Given an integer K and an array arr[], the task is to count all the sub-arrays whose product is divisible by K.Examples: Input: arr[] = {6, 2, 8}, K = 4 Output: 4 Required sub-arrays are {6, 2}, {6, 2, 8}, {2, 8}and {8}.Input: arr[] = {9, 1, 14}, K = 6 Output: 1 Naive approach: Run nested loops and
    15+ min read
  • Check If Array Pair Sums Divisible by k
    Given an array of integers and a number k, write a function that returns true if the given array can be divided into pairs such that the sum of every pair is divisible by k. Examples: Input: arr[] = [9, 7, 5, 3], k = 6 Output: True We can divide the array into (9, 3) and (7, 5). Sum of both of these
    15 min read
  • Count pairs in an array whose absolute difference is divisible by K
    Given an array arr[] and a positive integer K. The task is to count the total number of pairs in the array whose absolute difference is divisible by K. Examples: Input: arr[] = {1, 2, 3, 4}, K = 2 Output: 2 Explanation: Total 2 pairs exists in the array with absolute difference divisible by 2. The p
    14 min read
  • Count number of pairs in array having sum divisible by K | SET 2
    Given an array A[] and positive integer K, the task is to count the total number of pairs in the array whose sum is divisible by K.Examples: Input : A[] = {2, 2, 1, 7, 5, 3}, K = 4 Output : 5 There are five pairs possible whose sum Is divisible by '4' i.e., (2, 2), (1, 7), (7, 5), (1, 3) and (5, 3)I
    6 min read
  • Count paths whose sum is not divisible by K in given Matrix
    Given an integer matrix mat[][] of size M x N and an integer K, the task is to return the number of paths from top-left to bottom-right by moving only right and downwards such that the sum of the elements on the path is not divisible by K. Examples: Input: mat = [[5, 2, 4], [3, 0, 5], [0, 7, 2]], K
    12 min read
  • Count pairs in an array whose absolute difference is divisible by K | Using Map
    Given an array, arr[] of N elements and an integer K, the task is to find the number of pairs (i, j) such that the absolute value of (arr[i] - arr[j]) is a multiple of K. Examples: Input: N = 4, K = 2, arr[] = {1, 2, 3, 4}Output: 2Explanation: Total 2 pairs exists in the array with absolute differen
    7 min read
  • Count divisible pairs in an array
    Given an array, count pairs in the array such that one element of the pair divides the other. Examples: Input : arr[] = {1, 2, 3} Output : 2 The two pairs are (1, 2) and (1, 3) Input : arr[] = {2, 3, 5, 7} Output: 0 Naive Approach: The brute force approach can be implemented by iterating through eve
    10 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences