Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on DP
  • Practice DP
  • MCQs on DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Subset Sum
  • LCS
  • LIS
  • Coin Change
  • Word Break
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • Digit DP
  • DP on Trees
  • DP on Graph
Open In App
Next Article:
Construct sum-array with sum of elements in given range
Next article icon

Count of Ways to obtain given Sum from the given Array elements

Last Updated : 14 Jun, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[], consisting of N non-negative integers and an integer S, the task is to find the number of ways to obtain the sum S by adding or subtracting array elements. 

Note: All the array elements need to be involved in generating the sum.

Examples:

Input: arr[] = {1, 1, 1, 1, 1}, S = 3 
Output: 5 
Explanation: 
Following are the possible ways to obtain the sum S:

  • -1 + 1 + 1 + 1 + 1 = 3
  • 1 -1 + 1 + 1 + 1 = 3
  • 1 + 1 – 1 + 1 + 1 = 3
  • 1 + 1 + 1 – 1 + 1 = 3
  • 1 + 1 + 1 + 1 – 1 = 3

Input: arr[] = {1, 2, 3, 4, 5}, S = 3 
Output: 3 
Explanation: 
Following are the possible ways to obtain the sum S:

  • -1 -2 -3 + 4 + 5 = 3
  • -1 + 2 + 3 + 4 – 5 = 3
  • 1 – 2 + 3 – 4 + 5 = 3

Recursive Approach: It can be observed that each array element can either be added or subtracted to obtain sum. Therefore, for each array element, recursively check for both the possibilities and increase count when sum S is obtained after reaching the end of the array.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways
int dfs(int nums[], int S, int curr_sum,
        int index, int n)
{
     
    // Base Case: Reached the
    // end of the array
    if (index == n)
    {
         
        // Sum is equal to the
        // required sum
        if (S == curr_sum)
            return 1;
        else
            return 0;
    }
 
    // Recursively check if required sum
    // can be obtained by adding current
    // element or by subtracting the
    // current index element
    return dfs(nums, S, curr_sum + nums[index],
               index + 1, n) +
           dfs(nums, S, curr_sum - nums[index],
               index + 1, n);
}
 
// Function to call dfs() to
// calculate the number of ways
int findWays(int nums[], int S, int n)
{
    return dfs(nums, S, 0, 0, n);
}
 
// Driver Code
int main()
{
    int S = 3;
    int arr[] = { 1, 2, 3, 4, 5 };
     
    int n = sizeof(arr) / sizeof(arr[0]);
     
    int answer = findWays(arr, S, n);
     
    cout << (answer);
    return 0;
}
 
// This code is contributed by chitranayal
 
 

Java




// Java Program to implement
// the above approach
import java.io.*;
 
class GFG {
 
    // Function to call dfs() to
    // calculate the number of ways
    static int findWays(int[] nums, int S)
    {
        return dfs(nums, S, 0, 0);
    }
 
    // Function to count the number of ways
    static int dfs(int[] nums, int S,
                   int curr_sum, int index)
    {
        // Base Case: Reached the
        // end of the array
        if (index == nums.length) {
 
            // Sum is equal to the
            // required sum
            if (S == curr_sum)
                return 1;
            else
                return 0;
        }
 
        // Recursively check if required sum
        // can be obtained by adding current
        // element or by subtracting the
        // current index element
        return dfs(nums, S, curr_sum + nums[index],
                   index + 1)
            + dfs(nums, S, curr_sum - nums[index],
                  index + 1);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int S = 3;
        int[] arr = new int[] { 1, 2, 3, 4, 5 };
        int answer = findWays(arr, S);
        System.out.println(answer);
    }
}
 
 

Python3




# Python3 program to implement
# the above approach
 
# Function to count the number of ways
def dfs(nums, S, curr_sum, index):
     
    # Base Case: Reached the
    # end of the array
    if (index == len(nums)):
 
        # Sum is equal to the
        # required sum
        if (S == curr_sum):
            return 1;
        else:
            return 0;
 
    # Recursively check if required sum
    # can be obtained by adding current
    # element or by subtracting the
    # current index element
    return (dfs(nums, S, curr_sum + nums[index],
                            index + 1) +
            dfs(nums, S, curr_sum - nums[index],
                            index + 1));
 
# Function to call dfs() to
# calculate the number of ways
def findWays(nums, S):
     
    return dfs(nums, S, 0, 0);
 
# Driver Code
if __name__ == '__main__':
     
    S = 3;
    arr = [1, 2, 3, 4, 5];
    answer = findWays(arr, S);
     
    print(answer);
 
# This code is contributed by amal kumar choubey
 
 

C#




// C# Program to implement
// the above approach
using System;
class GFG{
// Function to call dfs() to
  // calculate the number of ways
  static int findWays(int[] nums, int S)
  {
    return dfs(nums, S, 0, 0);
  }
 
  // Function to count the number of ways
  static int dfs(int[] nums, int S,
                 int curr_sum, int index)
  {
    // Base Case: Reached the
    // end of the array
    if (index == nums.Length)
    {
 
      // Sum is equal to the
      // required sum
      if (S == curr_sum)
        return 1;
      else
        return 0;
    }
 
    // Recursively check if required sum
    // can be obtained by adding current
    // element or by subtracting the
    // current index element
    return dfs(nums, S, curr_sum +
               nums[index], index + 1) +
             dfs(nums, S, curr_sum -
               nums[index], index + 1);
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int S = 3;
    int[] arr = new int[] { 1, 2, 3, 4, 5 };
    int answer = findWays(arr, S);
    Console.WriteLine(answer);
  }
}
 
// This code is contributed by Rajput-Ji
 
 

Javascript




<script>
 
    // Javascript Program to implement
    // the above approach
     
    // Function to call dfs() to
    // calculate the number of ways
    function findWays(nums, S)
    {
      return dfs(nums, S, 0, 0);
    }
 
    // Function to count the number of ways
    function dfs(nums, S, curr_sum, index)
    {
      // Base Case: Reached the
      // end of the array
      if (index == nums.length)
      {
 
        // Sum is equal to the
        // required sum
        if (S == curr_sum)
          return 1;
        else
          return 0;
      }
 
      // Recursively check if required sum
      // can be obtained by adding current
      // element or by subtracting the
      // current index element
      return dfs(nums, S, curr_sum +
                 nums[index], index + 1) +
               dfs(nums, S, curr_sum -
                 nums[index], index + 1);
    }
     
    let S = 3;
    let arr = [ 1, 2, 3, 4, 5 ];
    let answer = findWays(arr, S);
    document.write(answer);
   
</script>
 
 
Output: 
3

 

Time Complexity: O(2N) 
Auxiliary Space: O(1)

Dynamic Programming Approach: The above recursive approach can be optimized by using Memoization.

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform the DFS to calculate the
// number of ways
int dfs(vector<vector<int>> memo, int nums[], int S,
               int curr_sum, int index, int sum, int N)
{
    // Base case: Reached the end of array
    if (index == N) {
 
        // If current sum is obtained
        if (S == curr_sum)
            return 1;
 
        // Otherwise
        else
            return 0;
    }
 
    // If previously calculated
    // subproblem occurred
    if (memo[index][curr_sum + sum]
        != INT_MIN) {
        return memo[index][curr_sum + sum];
    }
 
    // Check if the required sum can
    // be obtained by adding current
    // element or by subtracting the
    // current index element
    int ans = dfs(memo, nums, index + 1,
                  curr_sum + nums[index], S, sum, N)
              + dfs(memo, nums, index + 1,
                    curr_sum - nums[index], S, sum, N);
 
    // Store the count of ways
    memo[index][curr_sum + sum] = ans;
 
    return ans;
}
 
// Function to call dfs
// to calculate the number of ways
int findWays(int nums[], int S, int N)
{
    int sum = 0;
 
    // Iterate till the length of array
    for (int i = 0; i < N; i++)
        sum += nums[i];
 
    // Initialize the memorization table
    vector<vector<int>> memo(N + 1, vector<int> (2 * sum + 1, INT_MIN));
 
    return dfs(memo, nums, S, 0, 0, sum, N);
}
 
// Driver code
int main()
{
    int S = 3;
    int arr[] ={ 1, 2, 3, 4, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int answer = findWays(arr, S, N);
    cout << answer << endl;
 
    return 0;
}
 
// This code is contributed by divyesh072019
 
 

Java




// Java Program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to call dfs
    // to calculate the number of ways
    static int findWays(int[] nums, int S)
    {
        int sum = 0;
 
        // Iterate till the length of array
        for (int i = 0; i < nums.length; i++)
            sum += nums[i];
 
        // Initialize the memorization table
        int[][] memo
            = new int[nums.length + 1][2 * sum + 1];
 
        for (int[] m : memo) {
            Arrays.fill(m, Integer.MIN_VALUE);
        }
 
        return dfs(memo, nums, S, 0, 0, sum);
    }
 
    // Function to perform the DFS to calculate the
    // number of ways
    static int dfs(int[][] memo, int[] nums, int S,
                   int curr_sum, int index, int sum)
    {
        // Base case: Reached the end of array
        if (index == nums.length) {
 
            // If current sum is obtained
            if (S == curr_sum)
                return 1;
 
            // Otherwise
            else
                return 0;
        }
 
        // If previously calculated
        // subproblem occurred
        if (memo[index][curr_sum + sum]
            != Integer.MIN_VALUE) {
            return memo[index][curr_sum + sum];
        }
 
        // Check if the required sum can
        // be obtained by adding current
        // element or by subtracting the
        // current index element
        int ans = dfs(memo, nums, index + 1,
                      curr_sum + nums[index], S, sum)
                  + dfs(memo, nums, index + 1,
                        curr_sum - nums[index], S, sum);
 
        // Store the count of ways
        memo[index][curr_sum + sum] = ans;
 
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int S = 3;
        int[] arr = new int[] { 1, 2, 3, 4, 5 };
        int answer = findWays(arr, S);
        System.out.println(answer);
    }
}
 
 

Python3




# Python3 program to implement
# the above approach
import sys
 
# Function to call dfs to
# calculate the number of ways
def findWays(nums, S):
     
    sum = 0
 
    # Iterate till the length of array
    for i in range(len(nums)):
        sum += nums[i]
 
    # Initialize the memorization table
    memo = [[-sys.maxsize - 1 for i in range(2 * sum + 1)]
                              for j in range(len(nums) + 1)]
 
    return dfs(memo, nums, S, 0, 0, sum)
 
# Function to perform the DFS to calculate the
# number of ways
def dfs(memo, nums, S, curr_sum, index, sum):
     
    # Base case: Reached the end of array
    if (index == len(nums)):
         
        # If current sum is obtained
        if (S == curr_sum):
            return 1
 
        # Otherwise
        else:
            return 0
 
    # If previously calculated
    # subproblem occurred
    if (memo[index][curr_sum + sum] != -sys.maxsize - 1):
        return memo[index][curr_sum + sum]
 
    # Check if the required sum can
    # be obtained by adding current
    # element or by subtracting the
    # current index element
    ans = (dfs(memo, nums, index + 1,
               curr_sum + nums[index], S, sum) +
           dfs(memo, nums, index + 1,
               curr_sum - nums[index], S, sum))
 
    # Store the count of ways
    memo[index][curr_sum + sum] = ans
 
    return ans
 
# Driver Code
if __name__ == '__main__':
     
    S = 3
    arr = [ 1, 2, 3, 4, 5 ]
    answer = findWays(arr, S)
     
    print(answer)
 
# This code is contributed by bgangwar59
 
 

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to call dfs
// to calculate the number of ways
static int findWays(int[] nums, int S)
{
    int sum = 0;
 
    // Iterate till the length of array
    for(int i = 0; i < nums.Length; i++)
        sum += nums[i];
 
    // Initialize the memorization table
    int[,] memo = new int[nums.Length + 1,
                              2 * sum + 1];
                               
    for(int i = 0; i < memo.GetLength(0); i++)
    {
        for(int j = 0; j < memo.GetLength(1); j++)
        {
            memo[i, j] = int.MinValue;
        }
    }
    return dfs(memo, nums, S, 0, 0, sum);
}
 
// Function to perform the DFS to calculate the
// number of ways
static int dfs(int[,] memo, int[] nums, int S,
               int curr_sum, int index, int sum)
{
     
    // Base case: Reached the end of array
    if (index == nums.Length)
    {
         
        // If current sum is obtained
        if (S == curr_sum)
            return 1;
 
        // Otherwise
        else
            return 0;
    }
 
    // If previously calculated
    // subproblem occurred
    if (memo[index, curr_sum + sum] != int.MinValue)
    {
        return memo[index, curr_sum + sum];
    }
 
    // Check if the required sum can
    // be obtained by adding current
    // element or by subtracting the
    // current index element
    int ans = dfs(memo, nums, index + 1,
                  curr_sum + nums[index], S, sum) +
              dfs(memo, nums, index + 1,
                  curr_sum - nums[index], S, sum);
 
    // Store the count of ways
    memo[index, curr_sum + sum] = ans;
 
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int S = 3;
    int[] arr = new int[] { 1, 2, 3, 4, 5 };
    int answer = findWays(arr, S);
     
    Console.WriteLine(answer);
}
}
 
// This code is contributed by Amit Katiyar
 
 

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to call dfs
// to calculate the number of ways
function findWays(nums, S)
{
     let sum = 0;
      
    // Iterate till the length of array
    for(let i = 0; i < nums.length; i++)
        sum += nums[i];
 
    // Initialize the memorization table
    let memo = new Array([nums.length + 1][2 * sum + 1]);
     
     for(let i = 0; i < nums.length + 1; i++)
    {
        memo[i] = new Array(2 * sum + 1);
        for(let j = 0; j < 2 * sum + 1; j++)
        {
            memo[i][j] = Number.MIN_VALUE;
        }
    }
    return dfs(memo, nums, S, 0, 0, sum);
}
 
// Function to perform the DFS to calculate
// the number of ways
function dfs(memo, nums, S, curr_sum, index, sum)
{
     
    // Base case: Reached the end of array
    if (index == nums.length)
    {
         
        // If current sum is obtained
        if (S == curr_sum)
            return 1;
 
        // Otherwise
        else
            return 0;
    }
 
    // If previously calculated
    // subproblem occurred
    if (memo[index][curr_sum + sum] !=
        Number.MIN_VALUE)
    {
        return memo[index][curr_sum + sum];
    }
 
    // Check if the required sum can
    // be obtained by adding current
    // element or by subtracting the
    // current index element
    let ans = dfs(memo, nums, index + 1,
                  curr_sum + nums[index], S, sum) +
              dfs(memo, nums, index + 1,
                  curr_sum - nums[index], S, sum);
 
    // Store the count of ways
    memo[index][curr_sum + sum] = ans;
 
    return ans;
}
 
// Driver Code
let S = 3;
let arr = [ 1, 2, 3, 4, 5 ];
let answer = findWays(arr, S);
 
document.write(answer);
 
// This code is contributed by avanitrachhadiya2155
 
</script>
 
 
Output: 
3

 

Time Complexity: O(N * S) 
Auxiliary Space: O(N * S)

Knapsack Approach: The idea is to implement the 0/1 Knapsack problem. Follow the steps below: 

  • The original problem reduces to finding the number of ways to find a subset of arr[] that are all positive and the remaining elements as negative, such that their sum is equal to S.
  • Therefore, the problem is to finding no of subsets from the given array having sum (S + totalSum)/2. 

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to call dfs
// to calculate the number of ways
int knapSack(int nums[], int S, int n)
{
    int sum = 0;
    for(int i = 0; i < n; i++)
        sum += nums[i];
 
    // If target + sum is odd or
    // S exceeds sum
    if (sum < S || -sum > -S ||
       (S + sum) % 2 == 1)
 
        // No sultion exists
        return 0;
 
    int dp[(S + sum) / 2 + 1];
    for(int i = 0; i <= (S + sum) / 2; i++)
        dp[i] = 0;
         
    dp[0] = 1;
 
    for(int j = 0; j < n; j++)
    {
        for(int i = (S + sum) / 2;
                i >= nums[j]; i--)
        {
            dp[i] += dp[i - nums[j]];
        }
    }
 
    // Return the answer
    return dp[(S + sum) / 2];
}
 
// Driver Code
int main()
{
    int S = 3;
    int arr[] = { 1, 2, 3, 4, 5 };
    int answer = knapSack(arr, S, 5);
     
    cout << answer << endl;
}
 
// This code is contributed by amal kumar choubey
 
 

Java




// Java Program to implement
// the above approach
import java.io.*;
 
class GFG {
 
    // Function to call dfs
    // to calculate the number of ways
    static int knapSack(int[] nums, int S)
    {
        int sum = 0;
        for (int i : nums)
            sum += i;
 
        // If target + sum is odd or S exceeds sum
        if (sum < S || -sum > -S || (S + sum) % 2 == 1)
 
            // No sultion exists
            return 0;
 
        int[] dp = new int[(S + sum) / 2 + 1];
        dp[0] = 1;
 
        for (int num : nums) {
            for (int i = dp.length - 1; i >= num; i--) {
                dp[i] += dp[i - num];
            }
          }
       
      
 
        // Return the answer
        return dp[dp.length - 1];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int S = 3;
        int[] arr = new int[] { 1, 2, 3, 4, 5 };
        int answer = knapSack(arr, S);
        System.out.println(answer);
    }
}
 
 

Python3




# Python3 Program to implement
# the above approach
 
# Function to call dfs
# to calculate the number of ways
def knapSack(nums, S):
    sum = 0;
    for i in range(len(nums)):
        sum += nums[i];
 
    # If target + sum is odd or S exceeds sum
    if (sum < S or -sum > -S or
       (S + sum) % 2 == 1):
 
        # No sultion exists
        return 0;
       
    dp = [0]*(((S + sum) // 2) + 1);
    dp[0] = 1;
    for j in range(len(nums)):
        for i in range(len(dp) - 1, nums[j] - 1, -1):
            dp[i] += dp[i - nums[j]];
         
    # Return the answer
    return dp[len(dp) - 1];
 
# Driver Code
if __name__ == '__main__':
    S = 3;
    arr = [1, 2, 3, 4, 5 ];
    answer = knapSack(arr, S);
    print(answer);
 
# This code is contributed by Princi Singh
 
 

C#




// C# Program to implement
// the above approach
using System;
class GFG{
 
  // Function to call dfs
  // to calculate the number of ways
  static int knapSack(int[] nums, int S)
  {
    int sum = 0;
    foreach (int i in nums)
      sum += i;
 
    // If target + sum is odd or S exceeds sum
    if (sum < S || -sum > -S ||
       (S + sum) % 2 == 1)
 
      // No sultion exists
      return 0;
 
    int[] dp = new int[(S + sum) / 2 + 1];
    dp[0] = 1;
 
    foreach (int num in nums)
    {
      for (int i = dp.Length - 1; i >= num; i--)
      {
        dp[i] += dp[i - num];
      }
    }
 
    // Return the answer
    return dp[dp.Length - 1];
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int S = 3;
    int[] arr = new int[] { 1, 2, 3, 4, 5 };
    int answer = knapSack(arr, S);
    Console.WriteLine(answer);
  }
}
 
// This code is contributed by Rajput-Ji
 
 

Javascript




<script>
    // Javascript Program to implement
    // the above approach
     
    // Function to call dfs
    // to calculate the number of ways
    function knapSack(nums, S)
    {
        let sum = 0;
        for (let i = 0; i < nums.length; i++)
            sum += nums[i];
  
        // If target + sum is odd or S exceeds sum
        if (sum < S || -sum > -S || (S + sum) % 2 == 1)
  
            // No sultion exists
            return 0;
  
        let dp = new Array(parseInt((S + sum) / 2, 10) + 1);
        dp.fill(0);
        dp[0] = 1;
  
        for (let num = 0; num < nums.length; num++) {
            for (let i = dp.length - 1; i >= nums[num]; i--) {
                dp[i] += dp[i - nums[num]];
            }
          }
        
       
  
        // Return the answer
        return dp[dp.length - 1];
    }
     
    let S = 3;
    let arr = [ 1, 2, 3, 4, 5 ];
    let answer = knapSack(arr, S);
    document.write(answer);
 
// This code is contributed by divyeshrabadiya07.
</script>
 
 
Output: 
3

 

Time Complexity: O(n*(sum + S)), where sum denotes the sum of the array 
Auxiliary Space: O(S + sum)

 



Next Article
Construct sum-array with sum of elements in given range

A

abhinaygupta98
Improve
Article Tags :
  • Algorithms
  • Arrays
  • Divide and Conquer
  • DSA
  • Dynamic Programming
  • Mathematical
  • Recursion
  • Searching
  • knapsack
  • Memoization
  • subset
Practice Tags :
  • Algorithms
  • Arrays
  • Divide and Conquer
  • Dynamic Programming
  • Mathematical
  • Recursion
  • Searching
  • subset

Similar Reads

  • Count of ways to choose K elements from given Array with maximum sum
    Given an array, arr[] of size N and an integer K, the task is to find the number of ways of selecting K array elements, such that the sum of these K elements is the maximum possible sum. Examples: Input: arr[] = {3, 1, 1, 2}, K = 3 Output: 2Explanation: The possible ways of selecting 3 elements are:
    8 min read
  • Count ways to select K array elements lying in a given range
    Given three positive integers, L, R, K and an array arr[] consisting of N positive integers, the task is to count the number of ways to select at least K array elements from the given array having values in the range [L, R]. Examples: Input: arr[] = {12, 4, 6, 13, 5, 10}, K = 3, L = 4, R = 10 Output
    9 min read
  • Count of elements which is the sum of a subarray of the given Array
    Given an array arr[], the task is to count elements in an array such that there exists a subarray whose sum is equal to this element.Note: Length of subarray must be greater than 1. Examples: Input: arr[] = {1, 2, 3, 4, 5, 6, 7} Output: 4 Explanation: There are 4 such elements in array - arr[2] = 3
    7 min read
  • Count of pairs of elements with Sum X and multiplication Y in given Array
    Given array A[] (-109 <= A[i] <= 109) of size N (2 <= N <= 107) along with integers X (-2*109 <= X <= 2*109) and Y (-1018 <= Y <= 1018), the task for this problem is to find the count of pairs (A[i], A[j]) such that X = A[i] + A[j] and Y = A[i] * A[j] also i < j. Also A[i]
    11 min read
  • Construct sum-array with sum of elements in given range
    You are given an array of n-elements and an odd-integer m. You have to construct a new sum_array from given array such that sum_array[i] = ?arr[j] for (i-(m/2)) < j (i+(m/2)). note : for 0 > j or j >= n take arr[j] = 0. Examples: Input : arr[] = {1, 2, 3, 4, 5}, m = 3 Output : sum_array = {
    7 min read
  • Count of ways to make Array sum even by removing only one element
    Given an array arr[] positive integers, the task is to find the number of ways to convert the array sum even if we are allowed to remove only one element.Examples: Input: arr[] = { 1, 3, 3, 2 } Output: 3 Explanation: 1. Remove 1, then sum is 3 + 3 + 2 = 8. 2. Remove 3, then sum is 1 + 3 + 2 = 6. 3.
    5 min read
  • Print elements that can be added to form a given sum
    Given an array arr[] of positive integers and a sum, the task is to print the elements that will be included to get the given sum. Note: Consider the elements in the form of queue i.e. Elements to be added from starting and up to the sum of elements is lesser or becomes equal to the given sum.Also,
    5 min read
  • Queries to count array elements from a given range having a single set bit
    Given an array arr[] consisting of N integers and a 2D array Q[][] consisting of queries of the following two types: 1 L R: Print the count of numbers from the range [L, R] having only a single set bit.2 X V: Update the array element at Xth index with V.Examples: Input: arr[] = { 12, 11, 16, 2, 32 }
    15+ min read
  • Count pairs from two sorted arrays whose sum is equal to a given value x
    Given two sorted arrays of size m and n of distinct elements. Given a value x. The problem is to count all pairs from both arrays whose sum is equal to x. Note: The pair has an element from each array.Examples : Input : arr1[] = {1, 3, 5, 7} arr2[] = {2, 3, 5, 8} x = 10 Output : 2 The pairs are: (5,
    15+ min read
  • Count of subarrays which forms a permutation from given Array elements
    Given an array A[] consisting of integers [1, N], the task is to count the total number of subarrays of all possible lengths x (1 ? x ? N), consisting of a permutation of integers [1, x] from the given array. Examples: Input: A[] = {3, 1, 2, 5, 4} Output: 4 Explanation: Subarrays forming a permutati
    6 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences