Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Natural Numbers
  • Whole Numbers
  • Real Numbers
  • Integers
  • Rational Numbers
  • Irrational Numbers
  • Complex Numbers
  • Prime Numbers
  • Odd Numbers
  • Even Numbers
  • Number System
Open In App
Next Article:
Count number of pairs (i, j) up to N that can be made equal on multiplying with a pair from the range [1, N / 2]
Next article icon

Count number of pairs (i, j) up to N that can be made equal on multiplying with a pair from the range [1, N / 2]

Last Updated : 20 Jul, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a positive even integer N, the task is to find the number of pairs (i, j) from the range [1, N] such that the product of i and L1 is the same as the product of j and L2 where i < j and L1 and L2 any number from the range [1, N/2].

Examples:

Input: N = 4
Output: 2
Explanation:
The possible pairs satisfying the given criteria are:

  1. (1, 2): As 1 < 2, and 1*2 = 2*1 where L1 = 2 and L2 = 1.
  2. (2, 4): As 2 < 4 and 2*2 = 4*1 where L1 = 2 and L2 = 1.

Therefore, the total count is 2.

Input: N = 6
Output: 7

Naive Approach: The given problem can be solved based on the following observations:

Let i * L1 = j * L2 = lcm(i, j) — (1)
? L1 = lcm(i, j)/ i
= j/gcd(i, j)

Similarly, L2 = i/gcd(i, j)

Now, for the condition to be satisfied, L1 and L2 must be in the range [1, N/2].

Therefore, the idea is to generate all possible pairs (i, j) over the range [1,  N] and if there exist any pair (i, j) such that the value of i/gcd(i, j) and j/gcd(i, j) is less than N/2, then increment the count of pairs by 1. After checking for all the pairs, print the value of the count as the result.

Time Complexity: O(N2*log N)
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by using Euler's Totient function. There exist the following 2 cases for any pair (i, j):

  • Case 1: If the pair (i, j) lies in the range [1, N/2], then all the possible pairs formed will satisfy the given condition. Therefore, the total count of pairs is given by (z*(z - 1))/2, where z = N/2.
  • Case 2: If all possible pairs (i, j) lies in the range [N/2 + 1, N] having gcd(i, j) is greater than 1 satisfy the given conditions.

Follow the steps below to count the total number of this type of pairs:

  • Compute ? for all numbers smaller than or equal to N by using Euler’s Totient function for all numbers smaller than or equal to N.
  • For a number j, the total number of possible pairs (i, j) can be calculated as (j - ?(j) - 1).
  • For each number in the range [N/2 + 1, N], count the total number pairs using the above formula.
  • After completing the above steps, print the sum of values obtained in the above two steps as the result.

Below is the implementation of the above approach:

C++
// C++ program for the above approach  #include <bits/stdc++.h> using namespace std;  // Function to compute totient of all // numbers smaller than or equal to N void computeTotient(int N, int phi[]) {     // Iterate over the range [2, N]     for (int p = 2; p <= N; p++) {          // If phi[p] is not computed         // already, then p is prime         if (phi[p] == p) {              // Phi of a prime number             // p is (p - 1)             phi[p] = p - 1;              // Update phi values of             // all multiples of p             for (int i = 2 * p; i <= N;                  i += p) {                  // Add contribution of p                 // to its multiple i by                 // multiplying with (1 - 1/p)                 phi[i] = (phi[i] / p) * (p - 1);             }         }     } }  // Function to count the pairs (i, j) // from the range [1, N], satisfying // the given condition void countPairs(int N) {     // Stores the counts of first and     // second type of pairs respectively     int cnt_type1 = 0, cnt_type2 = 0;      // Count of first type of pairs     int half_N = N / 2;     cnt_type1 = (half_N * (half_N - 1)) / 2;      // Stores the  phi or totient values     int phi[N + 1];      for (int i = 1; i <= N; i++) {         phi[i] = i;     }      // Calculate the Phi values     computeTotient(N, phi);      // Iterate over the range     // [N/2 + 1, N]     for (int i = (N / 2) + 1;          i <= N; i++)          // Update the value of         // cnt_type2         cnt_type2 += (i - phi[i] - 1);      // Print the total count     cout << cnt_type1 + cnt_type2; }  // Driver Code int main() {     int N = 6;     countPairs(N);      return 0; } 
Java
// Java program for the above approach import java.util.*;  class GFG{  // Function to compute totient of all // numbers smaller than or equal to N static void computeTotient(int N, int phi[]) {          // Iterate over the range [2, N]     for(int p = 2; p <= N; p++)     {                  // If phi[p] is not computed         // already, then p is prime         if (phi[p] == p)          {                          // Phi of a prime number             // p is (p - 1)             phi[p] = p - 1;              // Update phi values of             // all multiples of p             for(int i = 2 * p; i <= N; i += p)             {                                  // Add contribution of p                 // to its multiple i by                 // multiplying with (1 - 1/p)                 phi[i] = (phi[i] / p) * (p - 1);             }         }     } }  // Function to count the pairs (i, j) // from the range [1, N], satisfying // the given condition static void countPairs(int N) {          // Stores the counts of first and     // second type of pairs respectively     int cnt_type1 = 0, cnt_type2 = 0;      // Count of first type of pairs     int half_N = N / 2;     cnt_type1 = (half_N * (half_N - 1)) / 2;      // Stores the  phi or totient values     int []phi = new int[N + 1];      for(int i = 1; i <= N; i++)     {         phi[i] = i;     }      // Calculate the Phi values     computeTotient(N, phi);      // Iterate over the range     // [N/2 + 1, N]     for(int i = (N / 2) + 1;             i <= N; i++)          // Update the value of         // cnt_type2         cnt_type2 += (i - phi[i] - 1);      // Print the total count     System.out.print(cnt_type1 + cnt_type2); }  // Driver Code public static void main(String[] args) {     int N = 6;          countPairs(N); } }  // This code is contributed by Amit Katiyar  
Python3
# Python3 program for the above approach  # Function to compute totient of all # numbers smaller than or equal to N def computeTotient(N, phi):      # Iterate over the range [2, N]     for p in range(2, N + 1):          # If phi[p] is not computed         # already then p is prime         if phi[p] == p:              # Phi of a prime number             # p is (p - 1)             phi[p] = p - 1              # Update phi values of             # all multiples of p             for i in range(2 * p, N + 1, p):                  # Add contribution of p                 # to its multiple i by                 # multiplying with (1 - 1/p)                 phi[i] = (phi[i] // p) * (p - 1)  # Function to count the pairs (i, j) # from the range [1, N], satisfying # the given condition def countPairs(N):      # Stores the counts of first and     # second type of pairs respectively     cnt_type1 = 0     cnt_type2 = 0      # Count of first type of pairs     half_N = N // 2     cnt_type1 = (half_N * (half_N - 1)) // 2      # Count of second type of pairs      # Stores the  phi or totient values     phi = [0 for i in range(N + 1)]      for i in range(1, N + 1):         phi[i] = i      # Calculate the Phi values     computeTotient(N, phi)      # Iterate over the range     # [N/2 + 1, N]     for i in range((N // 2) + 1, N + 1):          # Update the value of         # cnt_type2         cnt_type2 += (i - phi[i] - 1)      # Print the total count     print(cnt_type1 + cnt_type2)  # Driver Code if __name__ == '__main__':      N = 6     countPairs(N)      # This code is contributed by kundudinesh007. 
C#
// C# program for the above approach  using System; class GFG {     // Function to compute totient of all     // numbers smaller than or equal to N     static void computeTotient(int N, int[] phi)     {         // Iterate over the range [2, N]         for (int p = 2; p <= N; p++) {              // If phi[p] is not computed             // already, then p is prime             if (phi[p] == p) {                  // Phi of a prime number                 // p is (p - 1)                 phi[p] = p - 1;                  // Update phi values of                 // all multiples of p                 for (int i = 2 * p; i <= N; i += p) {                      // Add contribution of p                     // to its multiple i by                     // multiplying with (1 - 1/p)                     phi[i] = (phi[i] / p) * (p - 1);                 }             }         }     }      // Function to count the pairs (i, j)     // from the range [1, N], satisfying     // the given condition     static void countPairs(int N)     {         // Stores the counts of first and         // second type of pairs respectively         int cnt_type1 = 0, cnt_type2 = 0;          // Count of first type of pairs         int half_N = N / 2;         cnt_type1 = (half_N * (half_N - 1)) / 2;          // Stores the  phi or totient values         int[] phi = new int[N + 1];          for (int i = 1; i <= N; i++) {             phi[i] = i;         }          // Calculate the Phi values         computeTotient(N, phi);          // Iterate over the range         // [N/2 + 1, N]         for (int i = (N / 2) + 1; i <= N; i++)              // Update the value of             // cnt_type2             cnt_type2 += (i - phi[i] - 1);          // Print the total count         Console.Write(cnt_type1 + cnt_type2);     }      // Driver Code     public static void Main()     {         int N = 6;         countPairs(N);     } }  // This code is contributed by ukasp. 
JavaScript
<script>  // Javascript program implementation // of the approach  // Function to compute totient of all // numbers smaller than or equal to N function computeTotient(N, phi) {           // Iterate over the range [2, N]     for(let p = 2; p <= N; p++)     {                   // If phi[p] is not computed         // already, then p is prime         if (phi[p] == p)         {                           // Phi of a prime number             // p is (p - 1)             phi[p] = p - 1;               // Update phi values of             // all multiples of p             for(let i = 2 * p; i <= N; i += p)             {                                   // Add contribution of p                 // to its multiple i by                 // multiplying with (1 - 1/p)                 phi[i] = (phi[i] / p) * (p - 1);             }         }     } }   // Function to count the pairs (i, j) // from the range [1, N], satisfying // the given condition function countPairs(N) {           // Stores the counts of first and     // second type of pairs respectively     let cnt_type1 = 0, cnt_type2 = 0;       // Count of first type of pairs     let half_N = N / 2;     cnt_type1 = (half_N * (half_N - 1)) / 2;       // Stores the  phi or totient values     let phi = Array.from({length: N+1}, (_, i) => 0);       for(let i = 1; i <= N; i++)     {         phi[i] = i;     }       // Calculate the Phi values     computeTotient(N, phi);       // Iterate over the range     // [N/2 + 1, N]     for(let i = (N / 2) + 1;             i <= N; i++)           // Update the value of         // cnt_type2         cnt_type2 += (i - phi[i] - 1);       // Print the total count     document.write(cnt_type1 + cnt_type2); }  // Driver Code          let N = 6;           countPairs(N);    // This code is contributed by souravghosh0416. </script> 

Output: 
7

 

Time Complexity: O(N*log(log(N)))
Auxiliary Space: O(N), since N extra space has been taken.


Next Article
Count number of pairs (i, j) up to N that can be made equal on multiplying with a pair from the range [1, N / 2]

K

kundudinesh007
Improve
Article Tags :
  • Mathematical
  • DSA
  • number-theory
  • Numbers
  • euler-totient
Practice Tags :
  • Mathematical
  • number-theory
  • Numbers

Similar Reads

    Euler Totient for Competitive Programming
    What is Euler Totient function(ETF)?Euler Totient Function or Phi-function for 'n', gives the count of integers in range '1' to 'n' that are co-prime to 'n'. It is denoted by \phi(n) .For example the below table shows the ETF value of first 15 positive integers: 3 Important Properties of Euler Totie
    8 min read
    Euler's Totient Function
    Given an integer n, find the value of Euler's Totient Function, denoted as Φ(n). The function Φ(n) represents the count of positive integers less than or equal to n that are relatively prime to n. Euler's Totient function Φ(n) for an input n is the count of numbers in {1, 2, 3, ..., n-1} that are re
    10 min read
    Count of non co-prime pairs from the range [1, arr[i]] for every array element
    Given an array arr[] consisting of N integers, the task for every ith element of the array is to find the number of non co-prime pairs from the range [1, arr[i]]. Examples: Input: N = 2, arr[] = {3, 4}Output: 2 4Explanation: All non-co-prime pairs from the range [1, 3] are (2, 2) and (3, 3).All non-
    13 min read
    Generate an array having sum of Euler Totient Function of all elements equal to N
    Given a positive integer N, the task is to generate an array such that the sum of the Euler Totient Function of each element is equal to N. Examples: Input: N = 6Output: 1 6 2 3 Input: N = 12Output: 1 12 2 6 3 4 Approach: The given problem can be solved based on the divisor sum property of the Euler
    5 min read
    Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y)
    Given two integers X and Y, the task is to find the number of integers, K, such that gcd(X, Y) is equal to gcd(X+K, Y), where 0 < K <Y. Examples: Input: X = 3, Y = 15Output: 4Explanation: All possible values of K are {0, 3, 6, 9} for which GCD(X, Y) = GCD(X + K, Y). Input: X = 2, Y = 12Output:
    8 min read
    Count of integers up to N which are non divisors and non coprime with N
    Given an integer N, the task is to find the count of all possible integers less than N satisfying the following properties: The number is not coprime with N i.e their GCD is greater than 1.The number is not a divisor of N. Examples: Input: N = 10 Output: 3 Explanation: All possible integers which ar
    5 min read
    Find the number of primitive roots modulo prime
    Given a prime p . The task is to count all the primitive roots of p .A primitive root is an integer x (1 <= x < p) such that none of the integers x - 1, x2 - 1, ...., xp - 2 - 1 are divisible by p but xp - 1 - 1 is divisible by p . Examples: Input: P = 3 Output: 1 The only primitive root modul
    5 min read
    Compute power of power k times % m
    Given x, k and m. Compute (xxxx...k)%m, x is in power k times. Given x is always prime and m is greater than x. Examples: Input : 2 3 3 Output : 1 Explanation : ((2 ^ 2) ^ 2) % 3 = (4 ^ 2) % 3 = 1 Input : 3 2 3 Output : 0 Explanation : (3^3)%3 = 0 A naive approach is to compute the power of x k time
    15+ min read
    Primitive root of a prime number n modulo n
    Given a prime number n, the task is to find its primitive root under modulo n. The primitive root of a prime number n is an integer r between[1, n-1] such that the values of r^x(mod n) where x is in the range[0, n-2] are different. Return -1 if n is a non-prime number. Examples: Input : 7 Output : S
    15 min read
    Euler's Totient function for all numbers smaller than or equal to n
    Euler's Totient function ?(n) for an input n is the count of numbers in {1, 2, 3, ..., n} that are relatively prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1. For example, ?(4) = 2, ?(3) = 2 and ?(5) = 4. There are 2 numbers smaller or equal to 4 that are relatively pri
    13 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences