Count number of common elements between a sorted array and a reverse sorted array
Last Updated : 22 Mar, 2023
Given two arrays consisting of N distinct integers such that the array A[] and B[] are sorted in ascending and descending order respectively, the task is to find the number of values common in both arrays.
Examples:
Input: A[] = {1, 10, 100}, B[] = {200, 20, 2}
Output: 0
Input: A[] = {2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999}, B[] = {109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1}
Output: 4
Naive Approach:- Check for all elements in array A that is present in array B or not if Yes increase the count of pair.
Implementation:-
C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count the number of // elements common in both the arrays int countEqual(int A[], int B[], int N) { //variable to store answer int ans=0; //first loop for array A for(int i=0;i<N;i++) { //This loop to find array A element in B for(int j=0;j<N;j++) { //if found then increase count and exit the loop if(A[i]==B[j]) { ans++; break; } } } return ans; } // Driver Code int main() { int A[] = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 }; int B[] = { 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 }; int N = sizeof(A) / sizeof(int); cout << countEqual(A, B, N); return 0; } //This code contributed by shubhamrajput6156
Java import java.io.*; class GFG { // Java program for the above approach // Function to count the number of // elements common in both the arrays public static int countEqual(int[] A, int[] B, int N) { // variable to store answer int ans = 0; // first loop for array A for (int i = 0;i < N;i++) { // This loop to find array A element in B for (int j = 0;j < N;j++) { // if found then increase count and exit the loop if (A[i] == B[j]) { ans++; break; } } } return ans; } // Driver Code public static void main(String[] args) { int[] A = {2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999}; int[] B = {109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1}; int N = A.length; System.out.print(countEqual(A, B, N)); } } // This code contributed by bhardwajji
JavaScript // JS code to implement the approach // JavaScript code for the above approach function countEqual(A, B, N) { // variable to store answer let ans = 0; // first loop for array A for (let i = 0; i < N; i++) { // This loop to find array A element in B for (let j = 0; j < N; j++) { // if found then increase count and exit the // loop if (A[i] == B[j]) { ans++; break; } } } return ans; } // Driver Code let A = [ 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 ]; let B = [ 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 ]; let N = A.length; console.log(countEqual(A, B, N)); // This code is contributed by phasing17
C# // C# program for the above approach using System; class GFG { // Function to count the number of // elements common in both the arrays public static int countEqual(int[] A, int[] B, int N) { // variable to store answer int ans = 0; // first loop for array A for (int i = 0;i < N;i++) { // This loop to find array A element in B for (int j = 0;j < N;j++) { // if found then increase count and exit the loop if (A[i] == B[j]) { ans++; break; } } } return ans; } // Driver Code public static void Main() { int[] A = {2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999}; int[] B = {109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1}; int N = A.Length; Console.WriteLine(countEqual(A, B, N)); } } // This code is contributed by Pushpesh Raj.
Python3 # python program for the above approach # Function to count the number of # elements common in both the arrays def countEqual(A, B, N): # variable to store answer ans = 0 # first loop for array A for i in range(N): # This loop to find array A element in B for j in range(N): # if found then increase count and exit the loop if A[i] == B[j]: ans += 1 break return ans # driver code A = [2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999] B = [109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1] N = len(A) print(countEqual(A, B, N))
Time Complexity:- O(N^2)
Auxiliary Space:- O(1)
Approach: The given problem can be solved by using the Two Pointer Approach. Follow the steps below to solve the problem:
- Initialize two variables, say first as 0 and second as (N - 1) that is used to traverse the array A[] and B[] from the front and back respectively.
- Initialize a variable, say count as 0 that stores the count of numbers common in the array A[] and B[].
- Iterate a loop until first < N and second >= 0 and perform the following steps:
- If the value of A[first] is equal to B[second], then increment the values of count and first and decrement the value of the second.
- If the value of A[first] is less than B[second], then increment the value of first.
- If the value of A[first] is greater than B[second], then decrement the value of the second.
- After completing the above steps, print the value of count as the result.
Below is the implementation of the above approach:
C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count the number of // elements common in both the arrays int countEqual(int A[], int B[], int N) { // Used to traverse array A[] and // B[] from the front and the back int first = 0; int second = N - 1; // Stores the count of numbers // common in both array int count = 0; while (first < N && second >= 0) { // If A[first] is less than // B[second] if (A[first] < B[second]) { // Increment the value // of first first++; } // IF B[second] is less // than A[first] else if (B[second] < A[first]) { // Decrement the value // of second second--; } // A[first] is equal to // B[second] else { // Increment the value // of count count++; // Increment the value // of first first++; // Decrement the value // of second second--; } } // Return the value of count return count; } // Driver Code int main() { int A[] = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 }; int B[] = { 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 }; int N = sizeof(A) / sizeof(int); cout << countEqual(A, B, N); return 0; }
Java // Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG { // Function to count the number of // elements common in both the arrays static int countEqual(int A[], int B[], int N) { // Used to traverse array A[] and // B[] from the front and the back int first = 0; int second = N - 1; // Stores the count of numbers // common in both array int count = 0; while (first < N && second >= 0) { // If A[first] is less than // B[second] if (A[first] < B[second]) { // Increment the value // of first first++; } // IF B[second] is less // than A[first] else if (B[second] < A[first]) { // Decrement the value // of second second--; } // A[first] is equal to // B[second] else { // Increment the value // of count count++; // Increment the value // of first first++; // Decrement the value // of second second--; } } // Return the value of count return count; } // Driver Code public static void main(String[] args) { int A[] = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 }; int B[] = { 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 }; int N = A.length; System.out.println(countEqual(A, B, N)); } } // This code is contributed by susmitakundugoaldanga.
Python3 # Python program for the above approach # Function to count the number of # elements common in both the arrays def countEqual(A, B, N) : # Used to traverse array A[] and # B[] from the front and the back first = 0 second = N - 1 # Stores the count of numbers # common in both array count = 0 while (first < N and second >= 0) : # If A[first] is less than # B[second] if (A[first] < B[second]) : # Increment the value # of first first += 1 # IF B[second] is less # than A[first] elif (B[second] < A[first]) : # Decrement the value # of second second -= 1 # A[first] is equal to # B[second] else : # Increment the value # of count count += 1 # Increment the value # of first first += 1 # Decrement the value # of second second -= 1 # Return the value of count return count # Driver Code A= [ 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 ] B = [ 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 ] N = len(A) print(countEqual(A, B, N)) # This code is contributed by sanjou_62.
C# // C# program for the above approach using System; class GFG{ // Function to count the number of // elements common in both the arrays static int countEqual(int[] A, int[] B, int N) { // Used to traverse array A[] and // B[] from the front and the back int first = 0; int second = N - 1; // Stores the count of numbers // common in both array int count = 0; while (first < N && second >= 0) { // If A[first] is less than // B[second] if (A[first] < B[second]) { // Increment the value // of first first++; } // IF B[second] is less // than A[first] else if (B[second] < A[first]) { // Decrement the value // of second second--; } // A[first] is equal to // B[second] else { // Increment the value // of count count++; // Increment the value // of first first++; // Decrement the value // of second second--; } } // Return the value of count return count; } // Driver code static void Main() { int[] A = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 }; int[] B = { 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 }; int N = A.Length; Console.WriteLine(countEqual(A, B, N)); } } // This code is contributed by abhinavjain194
JavaScript <script> // Javascript program for the above approach // Function to count the number of // elements common in both the arrays function countEqual(A, B, N) { // Used to traverse array A[] and // B[] from the front and the back let first = 0; let second = N - 1; // Stores the count of numbers // common in both array let count = 0; while (first < N && second >= 0) { // If A[first] is less than // B[second] if (A[first] < B[second]) { // Increment the value // of first first++; } // IF B[second] is less // than A[first] else if (B[second] < A[first]) { // Decrement the value // of second second--; } // A[first] is equal to // B[second] else { // Increment the value // of count count++; // Increment the value // of first first++; // Decrement the value // of second second--; } } // Return the value of count return count; } // Driver Code let A = [2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999]; let B = [109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1]; let N = A.length; document.write(countEqual(A, B, N)); // This code is contributed _saurabh_jaiswal </script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Another Approach : We will use Binary search to check if the element of array B[] is present in the array A[] or not because array A[] is already sorted in increasing order. So , we can use binary search for finding elements.
Below is the implementation of the above approach :
C++ // C++ program for the above approach #include <bits/stdc++.h> using namespace std; //Function to check if x is present in the array or not bool binarysearch(int arr[], int N, int x) { int l = 0, r = N - 1; while (l <= r) { int mid = (l + r) / 2; // Checking if the middle element is equal to x if (arr[mid] == x) { return true; } else if (arr[mid] < x) { l = mid + 1; } else { r = mid - 1; } } // return true , if element x is present in the array // else false return false; } // Function to count the number of // elements common in both the arrays int countEqual(int A[], int B[], int N, int M) { int count = 0; // Iterate each element of array B for (int i = 0; i < M; i++) { // Checking if the element of array B is present in // array A using the binary search if (binarysearch(A, N, B[i])) { count++; } } // Return count of common element return count; } // Driver Code int main() { int A[] = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 }; int B[] = { 109, 99, 68, 54, 22 , 19,17, 13, 11, 5, 3, 1 }; int N = sizeof(A) / sizeof(int); int M = sizeof(B) / sizeof(int); //Function call cout << countEqual(A, B, N, M)<<endl; return 0; } // This code is contributed by nikhilsainiofficial546
Java // Java program for the above approach import java.util.Arrays; class Main { // Function to check if x is present in the array or not static boolean binarySearch(int[] arr, int N, int x) { int l = 0, r = N - 1; while (l <= r) { int mid = (l + r) / 2; // Checking if the middle element is equal to x if (arr[mid] == x) { return true; } else if (arr[mid] < x) { l = mid + 1; } else { r = mid - 1; } } // return true , if element x is present in the array // else false return false; } // Function to count the number of elements common in both the arrays static int countEqual(int[] A, int[] B, int N, int M) { int count = 0; // Sort array A Arrays.sort(A); // Iterate each element of array B for (int i = 0; i < M; i++) { // Checking if the element of array B is present in array A using the binary search if (binarySearch(A, N, B[i])) { count++; } } // Return count of common element return count; } // Driver Code public static void main(String[] args) { int[] A = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 }; int[] B = { 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 }; int N = A.length; int M = B.length; //Function call System.out.println(countEqual(A, B, N, M)); } }
Python3 #Python program for the above approach # Function to check if x is present in the array or not def binarySearch(arr, N, x): l = 0 r = N - 1 while l <= r: mid = (l + r) // 2 # Checking if the middle element is equal to x if arr[mid] == x: return True elif arr[mid] < x: l = mid + 1 else: r = mid - 1 # return true , if element x is present in the array # else false return False # Function to count the number of elements common in both the arrays def countEqual(A, B, N, M): count = 0 # Sort array A A.sort() # Iterate each element of array B for i in range(M): # Checking if the element of array B is present in array A using the binary search if binarySearch(A, N, B[i]): count += 1 # Return count of common element return count # Driver Code A = [ 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 ] B = [ 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 ] N = len(A) M = len(B) #Function call print(countEqual(A, B, N, M))
C# // C# program for the above approach using System; class Program { // Function to check if x is present in the array or not static bool BinarySearch(int[] arr, int N, int x) { int l = 0, r = N - 1; while (l <= r) { int mid = (l + r) / 2; // Checking if the middle element is equal to x if (arr[mid] == x) { return true; } else if (arr[mid] < x) { l = mid + 1; } else { r = mid - 1; } } // return true , if element x is present in the // array else false return false; } // Function to count the number of // elements common in both the arrays static int CountEqual(int[] A, int[] B, int N, int M) { int count = 0; // Iterate each element of array B for (int i = 0; i < M; i++) { // Checking if the element of array B is present // in array A using the binary search if (BinarySearch(A, N, B[i])) { count++; } } // Return count of common element return count; } // Driver Code static void Main() { int[] A = { 2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999 }; int[] B = { 109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1 }; int N = A.Length; int M = B.Length; // Function call Console.WriteLine(CountEqual(A, B, N, M)); Console.ReadLine(); } }
JavaScript // JavaScript program to implement the approach // Function to check if x is present in the array or not function binarysearch(arr, N, x) { let l = 0, r = N - 1; while (l <= r) { let mid = Math.floor((l + r) / 2); // Checking if the middle element is equal to x if (arr[mid] === x) { return true; } else if (arr[mid] < x) { l = mid + 1; } else { r = mid - 1; } } // return true , if element x is present in the array // else false return false; } // Function to count the number of // elements common in both the arrays function countEqual(A, B, N, M) { let count = 0; // Iterate each element of array B for (let i = 0; i < M; i++) { // Checking if the element of array B is present in // array A using the binary search if (binarysearch(A, N, B[i])) { count++; } } // Return count of common element return count; } // Driver Code (() => { const A = [2, 4, 5, 8, 12, 13, 17, 18, 20, 22, 309, 999]; const B = [109, 99, 68, 54, 22, 19, 17, 13, 11, 5, 3, 1]; const N = A.length; const M = B.length; // Function call console.log(countEqual(A, B, N, M)); })(); // This code is contributed by phasing17
Time Complexity: O(M*log(N))
Auxiliary Space: O(1)
Similar Reads
Count number of common elements between two arrays
Given two arrays a[] and b[], the task is to find the count of common elements in both the given arrays. Note that both the arrays contain distinct (individually) positive integers.Examples: Input: a[] = {1, 2, 3}, b[] = {2, 4, 3} Output: 2 2 and 3 are common to both the arrays.Input: a[] = {1, 4, 7
15 min read
Count of all possible Arrays such that each array element can be over the range [1, arr[i]]
Given an array arr[] consisting of N positive integers, the task is to find the number of all possible arrays such that each array element can be over the range [1, arr[i]] all elements in the newly constructed array must be pairwise distinct. Examples: Input: arr[] = {5}Output: 5Explanation:All pos
5 min read
Count Array elements that occur before any of its prefix value of another Array
Given two arrays A[] and B[] of size N each, the task is to find the number of elements in array B[] that occur before any element that was present before it in array A[]. Example: Input: N = 5, A[] = {3, 5, 1, 2, 4}, B[] = {4, 3, 1, 5, 2}Output: 2Explanation: Array A represent that 3 comes first th
6 min read
Count number of elements between two given elements in array
Given an unsorted array of n elements and also given two points num1 and num2. The task is to count number of elements occurs between the given points (excluding num1 and num2). If there are multiple occurrences of num1 and num2, we need to consider leftmost occurrence of num1 and rightmost occurren
7 min read
Construct Binary Array having same number of unequal elements with two other Arrays
Given two binary arrays A[] and B[] of size N, the task is to construct the lexicographically smallest binary array X[] such that the number of non-equal elements in A and X is equal to the number of non-equal elements in B and X. If such an array does not exist return -1. Note: If there are multipl
12 min read
Number of moves required between the arrays to complete the traversal in sorted order
Given two sorted arrays, X[] of size N and Y[] of size M having unique values. The task is to count the total number of moves required between the arrays to traverse all the elements in both the arrays in ascending order if initially, the traversal starts from the X[] array. Examples: Input: X[] = {
11 min read
Map elements of an array to elements of another array
Given two arrays A and B of positive integers, elements of array B can be mapped to elements of array A only if both the elements have same value. The task is to compute the positions in array A to which elements of array B will be mapped. Print NA if mapping for a particular element cannot be done.
6 min read
Count of elements A[i] such that A[i] + 1 is also present in the Array
Given an integer array arr the task is to count the number of elements 'A[i]', such that A[i] + 1 is also present in the array.Note: If there are duplicates in the array, count them separately.Examples: Input: arr = [1, 2, 3] Output: 2 Explanation: 1 and 2 are counted cause 2 and 3 are in arr.Input:
11 min read
Count number of occurrences (or frequency) in a sorted array
Given a sorted array arr[] and an integer target, the task is to find the number of occurrences of target in given array. Examples: Input: arr[] = [1, 1, 2, 2, 2, 2, 3], target = 2Output: 4Explanation: 2 occurs 4 times in the given array. Input: arr[] = [1, 1, 2, 2, 2, 2, 3], target = 4Output: 0Expl
9 min read
Generate array having differences between count of occurrences of every array element on its left and right
Given an array A[] consisting of N integers, the task is to construct an array B[] such that for every ith index, B[i] = X - Y, where X and Y are the count of occurrences of A[i] after and before the ith index. Examples: Input: A[] = {3, 2, 1, 2, 3}Output: 1 1 0 -1 -1Explanation: arr[0] = 3, X = 1,
6 min read