Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Sum of leaf nodes at each horizontal level in a binary tree
Next article icon

Count nodes with two children at level L in a Binary Tree

Last Updated : 21 Mar, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a Binary tree, the task is to count the number of nodes with two children at a given level L.

Examples: 

Input:            1          /  \         2    3        / \    \       4   5    6          /    / \         7    8   9 L = 2 Output: 1  Input:           20          /   \         8     22        / \    / \       5   3  4   25      / \  / \     \     1  10 2  14    6 L = 3 Output: 2

Approach: Initialize a variable count = 0. Recursively traverse the tree in a level order manner. If the current level is same as the given level, then check whether the current node has two children. If it has two children then increment the variable count.

Below is the implementation of the above approach: 

C++




// C++ program to find number of full nodes
// at a given level
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Utility function to allocate memory for a new node
struct Node* newNode(int data)
{
    struct Node* node = new (struct Node);
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Function that returns the height of binary tree
int height(struct Node* root)
{
    if (root == NULL)
        return 0;
 
    int lheight = height(root->left);
    int rheight = height(root->right);
 
    return max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
void LevelOrder(struct Node* root, int level, int& count)
{
    if (root == NULL)
        return;
 
    if (level == 1 && root->left && root->right)
        count++;
 
    else if (level > 1) {
        LevelOrder(root->left, level - 1, count);
        LevelOrder(root->right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
int CountFullNodes(struct Node* root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    int count = 0;
 
    LevelOrder(root, L, count);
 
    return count;
}
 
// Driver code
int main()
{
    struct Node* root = newNode(7);
    root->left = newNode(5);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(1);
    root->left->left->left = newNode(2);
    root->left->left->right = newNode(11);
    root->right->left = newNode(3);
    root->right->right = newNode(9);
    root->right->right->right = newNode(13);
    root->right->right->left = newNode(10);
    root->right->right->right->left = newNode(4);
    root->right->right->right->right = newNode(12);
 
    int L = 3;
 
    cout << CountFullNodes(root, L);
 
    return 0;
}
 
 

Java




// Java program to find number of full nodes
// at a given level
class GFG
{
 
//INT class
static class INT
{
    int a;
}
 
// A binary tree node
static class Node
{
    int data;
    Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void main(String args[])
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    System.out.print( CountFullNodes(root, L));
 
}
}
 
// This code is contributed by Arnab Kundu
 
 

Python3




# Python3 program to find number of
# full nodes at a given level
 
# INT class
class INT:
  
    def __init__(self):
         
        self.a = 0
 
# A binary tree node
class Node:
     
    def __init__(self, data):
         
        self.left = None
        self.right = None
        self.data = data
  
# Utility function to allocate
# memory for a new node
def newNode(data):
 
    node = Node(data)
     
    return node
 
# Function that returns the
# height of binary tree
def height(root):
 
    if (root == None):
        return 0;
  
    lheight = height(root.left);
    rheight = height(root.right);
  
    return max(lheight, rheight) + 1;
 
# Level Order traversal to find the
# number of nodes having two children
def LevelOrder(root, level, count):
 
    if (root == None):
        return;
  
    if (level == 1 and
        root.left != None and
       root.right != None):
        count.a += 1
  
    elif (level > 1):
        LevelOrder(root.left,
                   level - 1, count);
        LevelOrder(root.right,
                   level - 1, count);
  
# Returns the number of full nodes
# at a given level
def CountFullNodes(root, L):
 
    # Stores height of tree
    h = height(root);
  
    # Stores count of nodes at a
    # given level that have two children
    count = INT()
  
    LevelOrder(root, L, count);
  
    return count.a
 
# Driver code   
if __name__=="__main__":
     
    root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
  
    L = 3;
  
    print(CountFullNodes(root, L))
     
# This code is contributed by rutvik_56
 
 

C#




// C# program to find number of full nodes
// at a given level
using System;
 
class GFG
{
 
// INT class
public class INT
{
    public int a;
}
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right;
};
 
// Utility function to allocate memory for a new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function that returns the height of binary tree
static int height(Node root)
{
    if (root == null)
        return 0;
 
    int lheight = height(root.left);
    int rheight = height(root.right);
 
    return Math.Max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number of nodes
// having two children
static void LevelOrder( Node root, int level, INT count)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left!=null && root.right!=null)
        count.a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1, count);
        LevelOrder(root.right, level - 1, count);
    }
}
 
// Returns the number of full nodes
// at a given level
static int CountFullNodes( Node root, int L)
{
    // Stores height of tree
    int h = height(root);
 
    // Stores count of nodes at a given level
    // that have two children
    INT count =new INT();
    count.a = 0;
 
    LevelOrder(root, L, count);
 
    return count.a;
}
 
// Driver code
public static void Main(String []args)
{
    Node root = newNode(7);
    root.left = newNode(5);
    root.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right = newNode(1);
    root.left.left.left = newNode(2);
    root.left.left.right = newNode(11);
    root.right.left = newNode(3);
    root.right.right = newNode(9);
    root.right.right.right = newNode(13);
    root.right.right.left = newNode(10);
    root.right.right.right.left = newNode(4);
    root.right.right.right.right = newNode(12);
 
    int L = 3;
 
    Console.Write( CountFullNodes(root, L));
 
}
}
 
// This code is contributed by 29AjayKumar
 
 

Javascript




<script>
 
// Javascript program to find number
// of full nodes at a given level
 
// INT class
let a = 0;
 
// A binary tree node
class Node
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
// Utility function to allocate memory
// for a new node
function newNode(data)
{
    let node = new Node(data);
    return (node);
}
 
// Function that returns the height
// of binary tree
function height(root)
{
    if (root == null)
        return 0;
 
    let lheight = height(root.left);
    let rheight = height(root.right);
 
    return Math.max(lheight, rheight) + 1;
}
 
// Level Order traversal to find the number
// of nodes having two children
function LevelOrder(root, level)
{
    if (root == null)
        return;
 
    if (level == 1 && root.left != null &&
                     root.right != null)
        a++;
 
    else if (level > 1)
    {
        LevelOrder(root.left, level - 1);
        LevelOrder(root.right, level - 1);
    }
}
 
// Returns the number of full nodes
// at a given level
function CountFullNodes(root, L)
{
     
    // Stores height of tree
    let h = height(root);
 
    LevelOrder(root, L);
 
    return a;
}
 
// Driver code
let root = newNode(7);
root.left = newNode(5);
root.right = newNode(6);
root.left.left = newNode(8);
root.left.right = newNode(1);
root.left.left.left = newNode(2);
root.left.left.right = newNode(11);
root.right.left = newNode(3);
root.right.right = newNode(9);
root.right.right.right = newNode(13);
root.right.right.left = newNode(10);
root.right.right.right.left = newNode(4);
root.right.right.right.right = newNode(12);
 
let L = 3;
 
document.write(CountFullNodes(root, L));
 
// This code is contributed by mukesh07
 
</script>
 
 
Output: 
2

 

Time Complexity: O(N) 
Auxiliary Space: O(N)

Another Approach:

We can solve this problem by level order traversal using queue. In which we find the element which have two children at given level and increment the count variable. 

Below is the implementation of above approach:

C++




// C++ program to find number of full nodes
// at a given level
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// function to allocate memory for a new node
struct Node* newNode(int data)
{
    struct Node* node = new Node();
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// function to return the number
// of nodes
int levelOrderTraversal(Node* root, int L)
{
    int count = 0;
    int level = 0;
    queue<Node*> q;
    q.push(root);
    while (!q.empty()) {
        level++;
        int n = q.size();
        for (int i = 0; i < n; i++) {
            Node* front_node = q.front();
            q.pop();
            if (L == level && front_node->left != NULL
                && front_node->right != NULL) {
                count++;
            }
            if (front_node->left != NULL)
                q.push(front_node->left);
            if (front_node->right != NULL)
                q.push(front_node->right);
        }
    }
    return count;
}
 
// Driver Code
int main()
{
    Node* root = newNode(7);
    root->left = newNode(5);
    root->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right = newNode(1);
    root->left->left->left = newNode(2);
    root->left->left->right = newNode(11);
    root->right->left = newNode(3);
    root->right->right = newNode(9);
    root->right->right->right = newNode(13);
    root->right->right->left = newNode(10);
    root->right->right->right->left = newNode(4);
    root->right->right->right->right = newNode(12);
 
    int L = 3;
    cout << levelOrderTraversal(root, L) << endl;
    return 0;
}
// This code is contributed by Kirti Agarwal
 
 

Java




// Java program to find number of full nodes
// at a given level
import java.util.LinkedList;
import java.util.Queue;
 
// A binary tree node
class Node {
    int data;
    Node left;
    Node right;
     
    // constructor to initialize data and left and right pointers
    Node(int data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
public class Main {
    // function to return the number of full nodes
    static int levelOrderTraversal(Node root, int L) {
        int count = 0;
        int level = 0;
        Queue<Node> q = new LinkedList<Node>();
        q.add(root);
        while (!q.isEmpty()) {
            level++;
            int n = q.size();
            for (int i = 0; i < n; i++) {
                Node front_node = q.poll();
                if (L == level && front_node.left != null
                    && front_node.right != null) {
                    count++;
                }
                if (front_node.left != null)
                    q.add(front_node.left);
                if (front_node.right != null)
                    q.add(front_node.right);
            }
        }
        return count;
    }
     
    // Driver Code
    public static void main(String[] args) {
        Node root = new Node(7);
        root.left = new Node(5);
        root.right = new Node(6);
        root.left.left = new Node(8);
        root.left.right = new Node(1);
        root.left.left.left = new Node(2);
        root.left.left.right = new Node(11);
        root.right.left = new Node(3);
        root.right.right = new Node(9);
        root.right.right.right = new Node(13);
        root.right.right.left = new Node(10);
        root.right.right.right.left = new Node(4);
        root.right.right.right.right = new Node(12);
 
        int L = 3;
        System.out.println(levelOrderTraversal(root, L));
    }
}
 
 

Python




# Python3 program to find number of
# full nodes at a given level
 
# a binary tree node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
         
# function to allocate memory for a new node
def newNode(data):
    return Node(data)
 
# function to return the number
# of nodes
def levelOrderTraversal(root, L):
    count = 0
    level = 0
    q = []
    q.append(root)
    while(len(q) > 0):
        level += 1
        n = len(q)
        for i in range(n):
            front_node = q.pop(0)
            if(L == level and front_node.left is not None and front_node.right is not None):
                count += 1
            if(front_node.left is not  None):
                q.append(front_node.left)
            if(front_node.right is not None):
                q.append(front_node.right)
         
    return count;
 
#driver code to test above functions
root = newNode(7);
root.left = newNode(5);
root.right = newNode(6);
root.left.left = newNode(8);
root.left.right = newNode(1);
root.left.left.left = newNode(2);
root.left.left.right = newNode(11);
root.right.left = newNode(3);
root.right.right = newNode(9);
root.right.right.right = newNode(13);
root.right.right.left = newNode(10);
root.right.right.right.left = newNode(4);
root.right.right.right.right = newNode(12);
 
L = 3;
 
print(levelOrderTraversal(root, L))
 
 

Javascript




// JavaScript program to find number of full nodes
// at a given level
// a binary tree node
class Node{
    constructor(data){
        this.data = data;
        this.left = this.right = null;
    }
}
 
// function to allcated memory for a new node
function newNode(data){
    return new Node(data);
}
 
// function to return the number
// of nodes
function levelOrderTraversal(root, L){
    let count = 0;
    let level = 0;
    let q = [];
    q.push(root);
    while(q.length > 0){
        level++;
        let n = q.length;
        for(let i = 0; i<n; i++){
            let front_node = q.shift();
            if(L == level && front_node.left != null
            && front_node.right != null){
                count++;
            }
            if(front_node.left) q.push(front_node.left);
            if(front_node.right) q.push(front_node.right);
        }
    }
    return count;
}
 
// driver code
let root = newNode(7);
root.left = newNode(5);
root.right = newNode(6);
root.left.left = newNode(8);
root.left.right = newNode(1);
root.left.left.left = newNode(2);
root.left.left.right = newNode(11);
root.right.left = newNode(3);
root.right.right = newNode(9);
root.right.right.right = newNode(13);
root.right.right.left = newNode(10);
root.right.right.right.left = newNode(4);
root.right.right.right.right = newNode(12);
 
let L = 3;
console.log(levelOrderTraversal(root, L));
 
// THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002)
 
 

C#




using System;
using System.Collections.Generic;
 
// C# program to find number of full nodes
// at a given level
public class Node {
    public int data;
    public Node left, right;
 
    public Node(int data) {
        this.data = data;
        this.left = this.right = null;
    }
}
 
public class BinaryTree {
    public static int LevelOrderTraversal(Node root, int L) {
        int count = 0, level = 0;
        Queue<Node> q = new Queue<Node>();
        q.Enqueue(root);
        while (q.Count > 0) {
            level++;
            int n = q.Count;
            for (int i = 0; i < n; i++) {
                Node front_node = q.Dequeue();
                if (L == level && front_node.left != null && front_node.right != null) {
                    count++;
                }
                if (front_node.left != null) q.Enqueue(front_node.left);
                if (front_node.right != null) q.Enqueue(front_node.right);
            }
        }
        return count;
    }
 
    public static void Main() {
        Node root = new Node(7);
        root.left = new Node(5);
        root.right = new Node(6);
        root.left.left = new Node(8);
        root.left.right = new Node(1);
        root.left.left.left = new Node(2);
        root.left.left.right = new Node(11);
        root.right.left = new Node(3);
        root.right.right = new Node(9);
        root.right.right.right = new Node(13);
        root.right.right.left = new Node(10);
        root.right.right.right.left = new Node(4);
        root.right.right.right.right = new Node(12);
 
        int L = 3;
        Console.WriteLine(LevelOrderTraversal(root, L));
    }
}
 
 
Output
2

Time Complexity: O(N) 
Auxiliary Space: O(N)



Next Article
Sum of leaf nodes at each horizontal level in a binary tree
author
sakshi_srivastava
Improve
Article Tags :
  • Data Structures
  • DSA
  • Tree
  • Binary Tree
Practice Tags :
  • Data Structures
  • Tree

Similar Reads

  • Nodes at Kth level without duplicates in a Binary Tree
    Given a binary tree with N nodes and an integer K, the task is to print nodes of the Kth level of a binary tree without duplicates. Examples: Input: 60 --- Level 0 / \ 50 30 --- Level 1 / \ / 80 10 40 --- Level 2 K = 1 Output: 30 50 Input: 50 --- Level 0 / \ 60 70 --- Level 1 / \ / \ 90 40 40 20 ---
    11 min read
  • Count of nodes in a Binary tree with immediate children as its factors
    Given a Binary Tree, the task is to print the count of nodes whose immediate children are its factors. Examples: Input: 1 / \ 15 20 / \ / \ 3 5 4 2 \ / 2 3 Output: 2 Explanation: Children of 15 (3, 5) are factors of 15 Children of 20 (4, 2) are factors of 20 Input: 7 / \ 210 14 / \ \ 70 14 30 / \ /
    15 min read
  • Check if two nodes are cousins in a Binary Tree
    Given a binary tree (having distinct node values) root and two node values. The task is to check whether the two nodes with values a and b are cousins.Note: Two nodes of a binary tree are cousins if they have the same depth with different parents. Example: Input: a = 5, b = 4 Output: TrueExplanation
    13 min read
  • Sum of leaf nodes at each horizontal level in a binary tree
    Given a Binary Tree, the task is to find the sum of leaf nodes at every level of the given tree. Examples: Input: Output:0063012Explanation:Level 1: No leaf node, so sum = 0Level 2: No leaf node, so sum = 0Level 3: One leaf node: 6, so sum = 6 Level 4: Three leaf nodes: 9, 10, 11, so sum = 30Level 5
    14 min read
  • Create Binary Tree with Nodes as Cumulative sum of children
    Given a root of a Binary Tree, the task is to update each of its nodes with the sum of all the nodes below it (from its left and right subtree), inclusive of the current Node. Example: Approach: The idea is to simply traverse through left and right subtree, and calculate sum of Left Subtree & Ri
    7 min read
  • Count of nodes in a Binary Tree whose immediate children are co-prime
    Given a Binary Tree, the task is to count the nodes whose immediate children are co-prime. Examples: Input: 1 / \ 15 5 / \ / \ 11 2 4 15 \ / 2 3 Output: 2 Explanation: Children of 15 (11, 2) are co-prime Children of 5 (4, 15) are co-prime Input: 7 / \ 21 14 / \ \ 77 16 3 / \ / \ 2 5 10 11 / 23 Outpu
    10 min read
  • Print all nodes between two given levels in Binary Tree
    Given a binary tree, the task is to print all nodes between two given levels in a binary tree. Print the nodes level-wise, i.e., the nodes for any level should be printed from left to right. Note: The levels are 1-indexed, i.e., root node is at level 1. Example: Input: Binary tree, l = 2, h = 3 Outp
    8 min read
  • Count Non-Leaf nodes in a Binary Tree
    Given a Binary tree, count the total number of non-leaf nodes in the tree Examples: Input : Output :2 Explanation In the above tree only two nodes 1 and 2 are non-leaf nodesRecommended PracticeCount Non-Leaf Nodes in TreeTry It! We recursively traverse the given tree. While traversing, we count non-
    10 min read
  • Program to count leaf nodes in a binary tree
    Given a Binary Tree, the task is to count leaves in it. A node is a leaf node if both left and right child nodes of it are NULL. Example: Input: Output: 3Explanation: Three leaf nodes are 3, 4 and 5 as both of their left and right child is NULL.Input: Output: 3Explanation: Three leaf nodes are 4, 6
    7 min read
  • Find the Level of a Binary Tree with Width K
    Given a Binary Tree and an integer K, the task is to find the level of the Binary Tree with width K. If multiple levels exists with width K, print the lowest level. If no such level exists, print -1. The width of a level of a Binary tree is defined as the number of nodes between leftmost and the rig
    10 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences