Count integers in an Array which are multiples their bits counts
Last Updated : 24 Mar, 2023
Given an array arr[] of N elements, the task is to count all the elements which are a multiple of their set bits count.
Examples:
Input : arr[] = { 1, 2, 3, 4, 5, 6 } Output : 4 Explanation : There numbers which are multiple of their setbits count are { 1, 2, 4, 6 }. Input : arr[] = {10, 20, 30, 40} Output : 3 Explanation : There numbers which are multiple of their setbits count are { 10, 20, 40 }
Approach: Loop through each array elements one by one. Count the set bits of every number in the array. Check if the current integer is a multiple of its set bits count or not. If 'yes' then increment the counter by 1, else skip that integer. Below is the implementation of above approach:
C++ #include <bits/stdc++.h> using namespace std; // Function to find the count of numbers // which are multiple of its set bits count int find_count(vector<int>& arr) { // variable to store count int ans = 0; // iterate over elements of array for (int i : arr) { // Get the set-bits count of each element int x = __builtin_popcount(i); // Check if the setbits count // divides the integer i if (i % x == 0) // Increment the count // of required numbers by 1 ans += 1; } return ans; } // Driver code int main() { vector<int> arr = { 1, 2, 3, 4, 5, 6 }; cout << find_count(arr); return 0; }
Java class GFG{ // Function to find the count of numbers // which are multiple of its set bits count static int find_count(int []arr) { // variable to store count int ans = 0; // iterate over elements of array for (int i : arr) { // Get the set-bits count of each element int x = Integer.bitCount(i); // Check if the setbits count // divides the integer i if (i % x == 0) // Increment the count // of required numbers by 1 ans += 1; } return ans; } // Driver code public static void main(String[] args) { int []arr = { 1, 2, 3, 4, 5, 6 }; System.out.print(find_count(arr)); } } // This code contributed by Princi Singh
Python3 # Python3 implementation of above approach # function to return set bits count def bitsoncount(x): return bin(x).count('1') # Function to find the count of numbers # which are multiple of its set bits count def find_count(arr) : # variable to store count ans = 0 # iterate over elements of array for i in arr : # Get the set-bits count of each element x = bitsoncount(i) # Check if the setbits count # divides the integer i if (i % x == 0): # Increment the count # of required numbers by 1 ans += 1 return ans # Driver code arr = [ 1, 2, 3, 4, 5, 6 ] print(find_count(arr)) # This code is contributed by Sanjit_Prasad
C# using System; public class GFG{ // Function to find the count of numbers // which are multiple of its set bits count static int find_count(int []arr) { // Variable to store count int ans = 0; // Iterate over elements of array foreach (int i in arr) { // Get the set-bits count of each element int x = bitCount(i); // Check if the setbits count // divides the integer i if (i % x == 0) // Increment the count // of required numbers by 1 ans += 1; } return ans; } static int bitCount(long x) { int setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits; } // Driver code public static void Main(String[] args) { int []arr = { 1, 2, 3, 4, 5, 6 }; Console.Write(find_count(arr)); } } // This code contributed by Princi Singh
JavaScript <script> // Function to find the count of numbers // which are multiple of its set bits count function find_count(arr) { // Variable to store count var ans = 0; // Iterate over elements of array for (var i=0;i<=arr.length;i++) { // Get the set-bits count of each element var x = bitCount(i); // Check if the setbits count // divides the integer i if (i % x == 0) // Increment the count // of required numbers by 1 ans += 1; } return ans; } function bitCount( x) { var setBits = 0; while (x != 0) { x = x & (x - 1); setBits++; } return setBits; } var arr = [ 1, 2, 3, 4, 5, 6 ]; document.write(find_count(arr)); // This code contributed by SoumikMondal </script>
Time complexity:- O(nlog(max(arr[])), where n is the size of the array,
Space complexity:- O(1)
Approach 2:
Another approach would be to precompute the set bits count of all integers up to a certain limit (e.g., the maximum value in the array), and store them in an array or a hash table. Then, we can loop through the array and look up the set bits count of each element in the table, and check if it divides the element. This approach can be faster if we have to process multiple arrays with the same set of integers.
Here's an example implementation of the second approach:
C++ #include <bits/stdc++.h> using namespace std; const int MAX_N = 1000000; // Precomputed set bits count int set_bits_count[MAX_N + 1]; void precompute_set_bits_count() { for (int i = 1; i <= MAX_N; i++) { set_bits_count[i] = set_bits_count[i >> 1] + (i & 1); } } // Function to find the count of numbers // which are multiple of its set bits count int find_count(vector<int>& arr) { // variable to store count int ans = 0; // iterate over elements of array for (int i : arr) { // Get the set-bits count of each element int x = set_bits_count[i]; // Check if the setbits count // divides the integer i if (i % x == 0) // Increment the count // of required numbers by 1 ans += 1; } return ans; } // Driver code int main() { precompute_set_bits_count(); vector<int> arr = { 1, 2, 3, 4, 5, 6 }; cout << find_count(arr); return 0; }
Java import java.util.*; public class Main { static final int MAX_N = 1000000; // Precomputed set bits count static int[] set_bits_count = new int[MAX_N + 1]; static void precompute_set_bits_count() { for (int i = 1; i <= MAX_N; i++) { set_bits_count[i] = set_bits_count[i >> 1] + (i & 1); } } // Function to find the count of numbers // which are multiple of its set bits count static int find_count(ArrayList<Integer> arr) { // variable to store count int ans = 0; // iterate over elements of array for (int i : arr) { // Get the set-bits count of each element int x = set_bits_count[i]; // Check if the setbits count // divides the integer i if (i % x == 0) // Increment the count // of required numbers by 1 ans += 1; } return ans; } // Driver code public static void main(String[] args) { precompute_set_bits_count(); ArrayList<Integer> arr = new ArrayList<>(Arrays.asList(1, 2, 3, 4, 5, 6)); System.out.println(find_count(arr)); } }
Python3 MAX_N = 1000000 # Precomputed set bits count set_bits_count = [0] * (MAX_N + 1) def precompute_set_bits_count(): for i in range(1, MAX_N + 1): set_bits_count[i] = set_bits_count[i >> 1] + (i & 1) # Function to find the count of numbers # which are multiple of its set bits count def find_count(arr): # variable to store count ans = 0 # iterate over elements of array for i in arr: # Get the set-bits count of each element x = set_bits_count[i] # Check if the setbits count # divides the integer i if i % x == 0: # Increment the count # of required numbers by 1 ans += 1 return ans # Driver code if __name__ == '__main__': precompute_set_bits_count() arr = [1, 2, 3, 4, 5, 6] print(find_count(arr))
C# using System; using System.Collections.Generic; public class MainClass { const int MAX_N = 1000000; // Precomputed set bits count static int[] set_bits_count = new int[MAX_N + 1]; static void precompute_set_bits_count() { for (int i = 1; i <= MAX_N; i++) { set_bits_count[i] = set_bits_count[i >> 1] + (i & 1); } } // Function to find the count of numbers // which are multiple of its set bits count static int find_count(List<int> arr) { // variable to store count int ans = 0; // iterate over elements of array foreach (int i in arr) { // Get the set-bits count of each element int x = set_bits_count[i]; // Check if the setbits count // divides the integer i if (i % x == 0) // Increment the count // of required numbers by 1 ans += 1; } return ans; } // Driver code public static void Main() { precompute_set_bits_count(); List<int> arr = new List<int>() { 1, 2, 3, 4, 5, 6 }; Console.WriteLine(find_count(arr)); } }
JavaScript const MAX_N = 1000000; // Precomputed set bits count const set_bits_count = new Array(MAX_N + 1).fill(0); function precompute_set_bits_count() { for (let i = 1; i <= MAX_N; i++) { set_bits_count[i] = set_bits_count[i >> 1] + (i & 1); } } // Function to find the count of numbers // which are multiple of its set bits count function find_count(arr) { // variable to store count let ans = 0; // iterate over elements of array for (let i of arr) { // Get the set-bits count of each element let x = set_bits_count[i]; // Check if the setbits count // divides the integer i if (i % x == 0) { // Increment the count // of required numbers by 1 ans += 1; } } return ans; } // Driver code if (require.main === module) { precompute_set_bits_count(); const arr = [1, 2, 3, 4, 5, 6]; console.log(find_count(arr)); } // Contributed by sdeadityasharma
Time complexity:- O(nlog(max(arr[])), where n is the size of the array,
Auxiliary Space:- O(N)
Similar Reads
How to Count Set Bits in an Integer in C++?
In binary representation of a number, a set bit is defined as the binary digit (bit) that is set to 1. In this article, we will learn how to count the set bits in a given integer in C++. Example Input: 13Output:The number of set bits in 13 (1101) is: 3Counting Set Bits in an IntegerTo count the set
2 min read
Count the number of 1's and 0's in a binary array using STL in C++ ?
Given a binary array, the task is to count the number of 1's and 0's in this array using STL in C++. Examples: Input: arr[] = {1, 0, 0, 1, 0, 0, 1} Output: 1's = 3, 0's = 4 Input: arr[] = {1, 1, 1, 1, 0, 0, 1} Output: 1's = 5, 0's = 2 Approach: We can count the same using count_if() function present
1 min read
Count pairs whose Bitwise AND exceeds Bitwise XOR from a given array
Given an array arr[] of size N, the task is to count the number of pairs from the given array such that the Bitwise AND (&) of each pair is greater than its Bitwise XOR(^). Examples : Input: arr[] = {1, 2, 3, 4} Output:1Explanation:Pairs that satisfy the given conditions are: (2 & 3) > (2
6 min read
How to Count the Number of Occurrences of a Value in an Array in C++?
In C++, an array is a data structure that stores the collection of the same type of data in a contiguous memory location. In this article, we will learn how to count the number of occurrences of a value in an array in C++. Example: Input: arr= {2, 4, 5 ,2 ,4 , 5, 2 , 3 ,8}Target = 2Output: Number of
2 min read
Count total set bits in all numbers from 1 to n | Set 2
Given a positive integer N, the task is to count the sum of the number of set bits in the binary representation of all the numbers from 1 to N.Examples: Input: N = 3 Output: 4 DecimalBinarySet Bit Count101121013112 1 + 1 + 2 = 4Input: N = 16 Output: 33 Recommended PracticeCount total set bitsTry It!
11 min read
Count total set bits in all numbers from 1 to N | Set 3
Given a positive integer N, the task is to count the total number of set bits in binary representation of all the numbers from 1 to N. Examples: Input: N = 3 Output: 4 setBits(1) + setBits(2) + setBits(3) = 1 + 1 + 2 = 4 Input: N = 6 Output: 9 Approach: Solution to this problem has been published in
12 min read
Count of Arrays of size N with elements in range [0, (2^K)-1] having maximum sum & bitwise AND 0
Given two integers N and K, The task is to find the count of all possible arrays of size N with maximum sum & bitwise AND of all elements as 0. Also, elements should be within the range of 0 to 2K-1. Examples: Input: N = 3, K = 2Output: 9Explanation: 22 - 1 = 3, so elements of arrays should be b
6 min read
Bitwise OR of all unordered pairs from a given array
Given an array arr[] of size N, the task is to find the Bitwise XOR of all possible unordered pairs from the given array. Examples: Input: arr[] = {1, 5, 3, 7} Output: 7 Explanation: All possible unordered pairs are (1, 5), (1, 3), (1, 7), (5, 3), (5, 7), (3, 7) Bitwise OR of all possible pairs are
8 min read
Count of even set bits between XOR of two arrays
Given two arrays A[] and B[] having N and M positive elements respectively. The task is to count the number of elements in array A with even number of set bits in XOR for every element of array B. Examples: Input: A[] = { 4, 2, 15, 9, 8, 8 }, B[] = { 3, 4, 22 } Output: 2 4 4 Explanation: Binary repr
11 min read
bitset count() in C++ STL
bitset::count() is an inbuilt STL in C++ which returns the number of set bits in the binary representation of a number. Syntax: int count() Parameter: The function accepts no parameter. Return Value: The function returns the number of set bits. It returns the total number of ones or the number of se
2 min read