Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Practice Mathematical Algorithm
  • Mathematical Algorithms
  • Pythagorean Triplet
  • Fibonacci Number
  • Euclidean Algorithm
  • LCM of Array
  • GCD of Array
  • Binomial Coefficient
  • Catalan Numbers
  • Sieve of Eratosthenes
  • Euler Totient Function
  • Modular Exponentiation
  • Modular Multiplicative Inverse
  • Stein's Algorithm
  • Juggler Sequence
  • Chinese Remainder Theorem
  • Quiz on Fibonacci Numbers
Open In App
Next Article:
Count of integers up to N which are non divisors and non coprime with N
Next article icon

Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y)

Last Updated : 14 Apr, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two integers X and Y, the task is to find the number of integers, K, such that gcd(X, Y) is equal to gcd(X+K, Y), where 0 < K <Y.

Examples:

Input: X = 3, Y = 15
Output: 4
Explanation: All possible values of K are {0, 3, 6, 9} for which GCD(X, Y) = GCD(X + K, Y).

Input: X = 2, Y = 12
Output: 2
Explanation: All possible values of K are {0, 8}.

Naive Approach: The simplest approach to solve the problem is to iterate over the range [0, Y - 1]and for each value of i, check if GCD(X + i, Y) is equal to GCD(X, Y) or not.

Below is the implementation of the above approach:

C++
// C++ program for the above approach  #include <iostream> using namespace std;  // Function to calculate // GCD of two integers int gcd(int a, int b) {     if (b == 0)         return a;      return gcd(b, a % b); }  // Function to count possible // values of K int calculateK(int x, int y) {     int count = 0;     int gcd_xy = gcd(x, y);     for (int i = 0; i < y; i++) {          // If required condition         // is satisfied         if (gcd(x + i, y) == gcd_xy)              // Increase count             count++;     }      return count; }  // Driver Code int main() {      // Given X and y     int x = 3, y = 15;      cout << calculateK(x, y) << endl; } 
Java
// Java program for the above approach  import java.util.*; class GFG {        // Function to calculate  // GCD of two integers  static int gcd(int a, int b)  {      if (b == 0)          return a;        return gcd(b, a % b);  }     // Function to count possible  // values of K  static int calculateK(int x, int y)  {      int count = 0;      int gcd_xy = gcd(x, y);      for (int i = 0; i < y; i++)      {             // If required condition          // is satisfied          if (gcd(x + i, y) == gcd_xy)                 // Increase count              count++;      }        return count;  }     // Driver code public static void main(String[] args) {     // Given X and y      int x = 3, y = 15;       System.out.print(calculateK(x, y));  } }  // This code is contributed by sanjoy_62 
Python3
# Python3 program for the above approach  # Function to calculate # GCD of two integers def gcd(a, b):          if (b == 0):         return a      return gcd(b, a % b)  # Function to count possible # values of K def calculateK(x, y):          count = 0     gcd_xy = gcd(x, y)      for i in range(y):                  # If required condition         # is satisfied         if (gcd(x + i, y) == gcd_xy):                          # Increase count             count += 1      return count  # Driver Code if __name__ == '__main__':          # Given X and y     x = 3     y = 15      print (calculateK(x, y))  # This code is contributed by mohit kumar 29 
C#
// C# program for the above approach  using System;  class GFG{        // Function to calculate  // GCD of two integers  static int gcd(int a, int b)  {      if (b == 0)          return a;                return gcd(b, a % b);  }     // Function to count possible  // values of K  static int calculateK(int x, int y)  {      int count = 0;      int gcd_xy = gcd(x, y);           for(int i = 0; i < y; i++)      {                   // If required condition          // is satisfied          if (gcd(x + i, y) == gcd_xy)                       // Increase count              count++;      }        return count;  }     // Driver code public static void Main(String[] args) {          // Given X and y      int x = 3, y = 15;            Console.Write(calculateK(x, y));  } }  // This code is contributed by 29AjayKumar 
JavaScript
<script>  // JavaScript program for the above approach       // Function to calculate     // GCD of two integers     function gcd(a , b) {         if (b == 0)             return a;         return gcd(b, a % b);     }      // Function to count possible     // values of K     function calculateK(x , y) {         var count = 0;         var gcd_xy = gcd(x, y);         for (i = 0; i < y; i++) {              // If required condition             // is satisfied             if (gcd(x + i, y) == gcd_xy)                  // Increase count                 count++;         }         return count;     }      // Driver code              // Given X and y         var x = 3, y = 15;         document.write(calculateK(x, y));  // This code is contributed by todaysgaurav   </script> 

Output: 
4

 

Time Complexity: O(YlogY)
Auxiliary Space: O(1)

Efficient Approach: The idea is to use the concept of Euler's totient function. Follow the steps below to solve the problem: 

  • Calculate the gcd of X and Y and store it in a variable g.
  •  Initialize a variable n with Y/g.
  •  Now, find the totient function for n which will be the required answer.

Below is the implementation of the above approach:   

C++
// C++ program for the above approach  #include <iostream> using namespace std;  // Function to find the gcd of a and b int gcd(int a, int b) {      if (b == 0)         return a;      return gcd(b, a % b); }  // Function to find the number of Ks int calculateK(int x, int y) {      // Find gcd     int g = gcd(x, y);     int n = y / g;     int res = n;      // Calculating value of totient     // function for n     for (int i = 2; i * i <= n; i++) {         if (n % i == 0) {             res -= (res / i);             while (n % i == 0)                 n /= i;         }     }     if (n != 1)         res -= (res / n);     return res; }  // Driver Code int main() {      // Given X and Y     int x = 3, y = 15;      cout << calculateK(x, y) << endl; } 
Java
// Java program for the above approach import java.util.*; class GFG {  // Function to find the gcd of a and b static int gcd(int a, int b) {      if (b == 0)         return a;     return gcd(b, a % b); }  // Function to find the number of Ks static int calculateK(int x, int y) {      // Find gcd     int g = gcd(x, y);     int n = y / g;     int res = n;      // Calculating value of totient     // function for n     for (int i = 2; i * i <= n; i++)     {         if (n % i == 0)          {             res -= (res / i);             while (n % i == 0)                 n /= i;         }     }     if (n != 1)         res -= (res / n);     return res; }  // Driver Code public static void main(String[] args) {      // Given X and Y     int x = 3, y = 15;     System.out.print(calculateK(x, y) +"\n"); } }  // This code is contributed by shikhasingrajput  
Python3
# Python 3 program for the above approach  # Function to find the gcd of a and b def gcd(a, b):     if (b == 0):         return a     return gcd(b, a % b)  # Function to find the number of Ks def calculateK(x, y):      # Find gcd     g = gcd(x, y)     n = y // g     res = n      # Calculating value of totient     # function for n     i = 2     while i * i <= n:         if (n % i == 0):             res -= (res // i)             while (n % i == 0):                 n //= i         i += 1     if (n != 1):         res -= (res // n)     return res  # Driver Code if __name__ == "__main__":      # Given X and Y     x = 3     y = 15      print(calculateK(x, y))          # This code is contributed by chitranayal. 
C#
// C# program for the above approach using System;  class GFG{  // Function to find the gcd of a and b static int gcd(int a, int b) {     if (b == 0)         return a;              return gcd(b, a % b); }  // Function to find the number of Ks static int calculateK(int x, int y) {          // Find gcd     int g = gcd(x, y);     int n = y / g;     int res = n;      // Calculating value of totient     // function for n     for(int i = 2; i * i <= n; i++)     {         if (n % i == 0)          {             res -= (res / i);                          while (n % i == 0)                 n /= i;         }     }     if (n != 1)         res -= (res / n);              return res; }  // Driver Code public static void Main(String[] args) {          // Given X and Y     int x = 3, y = 15;          Console.Write(calculateK(x, y) + "\n"); } }  // This code is contributed by gauravrajput1  
JavaScript
<script> // javascript program for the above approach      // Function to find the gcd of a and b     function gcd(a , b) {          if (b == 0)             return a;         return gcd(b, a % b);     }      // Function to find the number of Ks     function calculateK(x , y) {          // Find gcd         var g = gcd(x, y);         var n = y / g;         var res = n;          // Calculating value of totient         // function for n         for (i = 2; i * i <= n; i++) {             if (n % i == 0) {                 res -= (res / i);                 while (n % i == 0)                     n /= i;             }         }         if (n != 1)             res -= (res / n);         return res;     }      // Driver Code              // Given X and Y         var x = 3, y = 15;         document.write(calculateK(x, y) + "\n");  // This code is contributed by umadevi9616 </script> 

Output: 
4

 

Time Complexity: O(log(min(X, Y)) + ?N) where N is Y/gcd(X, Y).
Auxiliary Space: O(1)


 


Next Article
Count of integers up to N which are non divisors and non coprime with N

S

shekabhi1208
Improve
Article Tags :
  • Mathematical
  • Technical Scripter
  • DSA
  • Technical Scripter 2020
  • HCF
  • euler-totient
Practice Tags :
  • Mathematical

Similar Reads

    Euler Totient for Competitive Programming
    What is Euler Totient function(ETF)?Euler Totient Function or Phi-function for 'n', gives the count of integers in range '1' to 'n' that are co-prime to 'n'. It is denoted by \phi(n) .For example the below table shows the ETF value of first 15 positive integers: 3 Important Properties of Euler Totie
    8 min read
    Euler's Totient Function
    Given an integer n, find the value of Euler's Totient Function, denoted as Φ(n). The function Φ(n) represents the count of positive integers less than or equal to n that are relatively prime to n. Euler's Totient function Φ(n) for an input n is the count of numbers in {1, 2, 3, ..., n-1} that are re
    10 min read
    Count of non co-prime pairs from the range [1, arr[i]] for every array element
    Given an array arr[] consisting of N integers, the task for every ith element of the array is to find the number of non co-prime pairs from the range [1, arr[i]]. Examples: Input: N = 2, arr[] = {3, 4}Output: 2 4Explanation: All non-co-prime pairs from the range [1, 3] are (2, 2) and (3, 3).All non-
    13 min read
    Generate an array having sum of Euler Totient Function of all elements equal to N
    Given a positive integer N, the task is to generate an array such that the sum of the Euler Totient Function of each element is equal to N. Examples: Input: N = 6Output: 1 6 2 3 Input: N = 12Output: 1 12 2 6 3 4 Approach: The given problem can be solved based on the divisor sum property of the Euler
    5 min read
    Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y)
    Given two integers X and Y, the task is to find the number of integers, K, such that gcd(X, Y) is equal to gcd(X+K, Y), where 0 < K <Y. Examples: Input: X = 3, Y = 15Output: 4Explanation: All possible values of K are {0, 3, 6, 9} for which GCD(X, Y) = GCD(X + K, Y). Input: X = 2, Y = 12Output:
    8 min read
    Count of integers up to N which are non divisors and non coprime with N
    Given an integer N, the task is to find the count of all possible integers less than N satisfying the following properties: The number is not coprime with N i.e their GCD is greater than 1.The number is not a divisor of N. Examples: Input: N = 10 Output: 3 Explanation: All possible integers which ar
    5 min read
    Find the number of primitive roots modulo prime
    Given a prime p . The task is to count all the primitive roots of p .A primitive root is an integer x (1 <= x < p) such that none of the integers x - 1, x2 - 1, ...., xp - 2 - 1 are divisible by p but xp - 1 - 1 is divisible by p . Examples: Input: P = 3 Output: 1 The only primitive root modul
    5 min read
    Compute power of power k times % m
    Given x, k and m. Compute (xxxx...k)%m, x is in power k times. Given x is always prime and m is greater than x. Examples: Input : 2 3 3 Output : 1 Explanation : ((2 ^ 2) ^ 2) % 3 = (4 ^ 2) % 3 = 1 Input : 3 2 3 Output : 0 Explanation : (3^3)%3 = 0 A naive approach is to compute the power of x k time
    15+ min read
    Primitive root of a prime number n modulo n
    Given a prime number n, the task is to find its primitive root under modulo n. The primitive root of a prime number n is an integer r between[1, n-1] such that the values of r^x(mod n) where x is in the range[0, n-2] are different. Return -1 if n is a non-prime number. Examples: Input : 7 Output : S
    15 min read
    Euler's Totient function for all numbers smaller than or equal to n
    Euler's Totient function ?(n) for an input n is the count of numbers in {1, 2, 3, ..., n} that are relatively prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1. For example, ?(4) = 2, ?(3) = 2 and ?(5) = 4. There are 2 numbers smaller or equal to 4 that are relatively pri
    13 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences