Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y)
Last Updated : 14 Apr, 2021
Given two integers X and Y, the task is to find the number of integers, K, such that gcd(X, Y) is equal to gcd(X+K, Y), where 0 < K <Y.
Examples:
Input: X = 3, Y = 15
Output: 4
Explanation: All possible values of K are {0, 3, 6, 9} for which GCD(X, Y) = GCD(X + K, Y).
Input: X = 2, Y = 12
Output: 2
Explanation: All possible values of K are {0, 8}.
Naive Approach: The simplest approach to solve the problem is to iterate over the range [0, Y - 1]and for each value of i, check if GCD(X + i, Y) is equal to GCD(X, Y) or not.
Below is the implementation of the above approach:
C++ // C++ program for the above approach #include <iostream> using namespace std; // Function to calculate // GCD of two integers int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to count possible // values of K int calculateK(int x, int y) { int count = 0; int gcd_xy = gcd(x, y); for (int i = 0; i < y; i++) { // If required condition // is satisfied if (gcd(x + i, y) == gcd_xy) // Increase count count++; } return count; } // Driver Code int main() { // Given X and y int x = 3, y = 15; cout << calculateK(x, y) << endl; }
Java // Java program for the above approach import java.util.*; class GFG { // Function to calculate // GCD of two integers static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to count possible // values of K static int calculateK(int x, int y) { int count = 0; int gcd_xy = gcd(x, y); for (int i = 0; i < y; i++) { // If required condition // is satisfied if (gcd(x + i, y) == gcd_xy) // Increase count count++; } return count; } // Driver code public static void main(String[] args) { // Given X and y int x = 3, y = 15; System.out.print(calculateK(x, y)); } } // This code is contributed by sanjoy_62
Python3 # Python3 program for the above approach # Function to calculate # GCD of two integers def gcd(a, b): if (b == 0): return a return gcd(b, a % b) # Function to count possible # values of K def calculateK(x, y): count = 0 gcd_xy = gcd(x, y) for i in range(y): # If required condition # is satisfied if (gcd(x + i, y) == gcd_xy): # Increase count count += 1 return count # Driver Code if __name__ == '__main__': # Given X and y x = 3 y = 15 print (calculateK(x, y)) # This code is contributed by mohit kumar 29
C# // C# program for the above approach using System; class GFG{ // Function to calculate // GCD of two integers static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to count possible // values of K static int calculateK(int x, int y) { int count = 0; int gcd_xy = gcd(x, y); for(int i = 0; i < y; i++) { // If required condition // is satisfied if (gcd(x + i, y) == gcd_xy) // Increase count count++; } return count; } // Driver code public static void Main(String[] args) { // Given X and y int x = 3, y = 15; Console.Write(calculateK(x, y)); } } // This code is contributed by 29AjayKumar
JavaScript <script> // JavaScript program for the above approach // Function to calculate // GCD of two integers function gcd(a , b) { if (b == 0) return a; return gcd(b, a % b); } // Function to count possible // values of K function calculateK(x , y) { var count = 0; var gcd_xy = gcd(x, y); for (i = 0; i < y; i++) { // If required condition // is satisfied if (gcd(x + i, y) == gcd_xy) // Increase count count++; } return count; } // Driver code // Given X and y var x = 3, y = 15; document.write(calculateK(x, y)); // This code is contributed by todaysgaurav </script>
Time Complexity: O(YlogY)
Auxiliary Space: O(1)
Efficient Approach: The idea is to use the concept of Euler's totient function. Follow the steps below to solve the problem:
- Calculate the gcd of X and Y and store it in a variable g.
- Initialize a variable n with Y/g.
- Now, find the totient function for n which will be the required answer.
Below is the implementation of the above approach:
C++ // C++ program for the above approach #include <iostream> using namespace std; // Function to find the gcd of a and b int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to find the number of Ks int calculateK(int x, int y) { // Find gcd int g = gcd(x, y); int n = y / g; int res = n; // Calculating value of totient // function for n for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res -= (res / i); while (n % i == 0) n /= i; } } if (n != 1) res -= (res / n); return res; } // Driver Code int main() { // Given X and Y int x = 3, y = 15; cout << calculateK(x, y) << endl; }
Java // Java program for the above approach import java.util.*; class GFG { // Function to find the gcd of a and b static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to find the number of Ks static int calculateK(int x, int y) { // Find gcd int g = gcd(x, y); int n = y / g; int res = n; // Calculating value of totient // function for n for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res -= (res / i); while (n % i == 0) n /= i; } } if (n != 1) res -= (res / n); return res; } // Driver Code public static void main(String[] args) { // Given X and Y int x = 3, y = 15; System.out.print(calculateK(x, y) +"\n"); } } // This code is contributed by shikhasingrajput
Python3 # Python 3 program for the above approach # Function to find the gcd of a and b def gcd(a, b): if (b == 0): return a return gcd(b, a % b) # Function to find the number of Ks def calculateK(x, y): # Find gcd g = gcd(x, y) n = y // g res = n # Calculating value of totient # function for n i = 2 while i * i <= n: if (n % i == 0): res -= (res // i) while (n % i == 0): n //= i i += 1 if (n != 1): res -= (res // n) return res # Driver Code if __name__ == "__main__": # Given X and Y x = 3 y = 15 print(calculateK(x, y)) # This code is contributed by chitranayal.
C# // C# program for the above approach using System; class GFG{ // Function to find the gcd of a and b static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to find the number of Ks static int calculateK(int x, int y) { // Find gcd int g = gcd(x, y); int n = y / g; int res = n; // Calculating value of totient // function for n for(int i = 2; i * i <= n; i++) { if (n % i == 0) { res -= (res / i); while (n % i == 0) n /= i; } } if (n != 1) res -= (res / n); return res; } // Driver Code public static void Main(String[] args) { // Given X and Y int x = 3, y = 15; Console.Write(calculateK(x, y) + "\n"); } } // This code is contributed by gauravrajput1
JavaScript <script> // javascript program for the above approach // Function to find the gcd of a and b function gcd(a , b) { if (b == 0) return a; return gcd(b, a % b); } // Function to find the number of Ks function calculateK(x , y) { // Find gcd var g = gcd(x, y); var n = y / g; var res = n; // Calculating value of totient // function for n for (i = 2; i * i <= n; i++) { if (n % i == 0) { res -= (res / i); while (n % i == 0) n /= i; } } if (n != 1) res -= (res / n); return res; } // Driver Code // Given X and Y var x = 3, y = 15; document.write(calculateK(x, y) + "\n"); // This code is contributed by umadevi9616 </script>
Time Complexity: O(log(min(X, Y)) + ?N) where N is Y/gcd(X, Y).
Auxiliary Space: O(1)
Similar Reads
Euler Totient for Competitive Programming What is Euler Totient function(ETF)?Euler Totient Function or Phi-function for 'n', gives the count of integers in range '1' to 'n' that are co-prime to 'n'. It is denoted by \phi(n) .For example the below table shows the ETF value of first 15 positive integers: 3 Important Properties of Euler Totie
8 min read
Euler's Totient Function Given an integer n, find the value of Euler's Totient Function, denoted as Φ(n). The function Φ(n) represents the count of positive integers less than or equal to n that are relatively prime to n. Euler's Totient function Φ(n) for an input n is the count of numbers in {1, 2, 3, ..., n-1} that are re
10 min read
Count of non co-prime pairs from the range [1, arr[i]] for every array element Given an array arr[] consisting of N integers, the task for every ith element of the array is to find the number of non co-prime pairs from the range [1, arr[i]]. Examples: Input: N = 2, arr[] = {3, 4}Output: 2 4Explanation: All non-co-prime pairs from the range [1, 3] are (2, 2) and (3, 3).All non-
13 min read
Generate an array having sum of Euler Totient Function of all elements equal to N Given a positive integer N, the task is to generate an array such that the sum of the Euler Totient Function of each element is equal to N. Examples: Input: N = 6Output: 1 6 2 3 Input: N = 12Output: 1 12 2 6 3 4 Approach: The given problem can be solved based on the divisor sum property of the Euler
5 min read
Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y) Given two integers X and Y, the task is to find the number of integers, K, such that gcd(X, Y) is equal to gcd(X+K, Y), where 0 < K <Y. Examples: Input: X = 3, Y = 15Output: 4Explanation: All possible values of K are {0, 3, 6, 9} for which GCD(X, Y) = GCD(X + K, Y). Input: X = 2, Y = 12Output:
8 min read
Count of integers up to N which are non divisors and non coprime with N Given an integer N, the task is to find the count of all possible integers less than N satisfying the following properties: The number is not coprime with N i.e their GCD is greater than 1.The number is not a divisor of N. Examples: Input: N = 10 Output: 3 Explanation: All possible integers which ar
5 min read
Find the number of primitive roots modulo prime Given a prime p . The task is to count all the primitive roots of p .A primitive root is an integer x (1 <= x < p) such that none of the integers x - 1, x2 - 1, ...., xp - 2 - 1 are divisible by p but xp - 1 - 1 is divisible by p . Examples: Input: P = 3 Output: 1 The only primitive root modul
5 min read
Compute power of power k times % m Given x, k and m. Compute (xxxx...k)%m, x is in power k times. Given x is always prime and m is greater than x. Examples: Input : 2 3 3 Output : 1 Explanation : ((2 ^ 2) ^ 2) % 3 = (4 ^ 2) % 3 = 1 Input : 3 2 3 Output : 0 Explanation : (3^3)%3 = 0 A naive approach is to compute the power of x k time
15+ min read
Primitive root of a prime number n modulo n Given a prime number n, the task is to find its primitive root under modulo n. The primitive root of a prime number n is an integer r between[1, n-1] such that the values of r^x(mod n) where x is in the range[0, n-2] are different. Return -1 if n is a non-prime number. Examples: Input : 7 Output : S
15 min read
Euler's Totient function for all numbers smaller than or equal to n Euler's Totient function ?(n) for an input n is the count of numbers in {1, 2, 3, ..., n} that are relatively prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1. For example, ?(4) = 2, ?(3) = 2 and ?(5) = 4. There are 2 numbers smaller or equal to 4 that are relatively pri
13 min read