Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Convert Binary Tree to Doubly Linked List using inorder traversal
Next article icon

Convert Binary Tree to Doubly Linked List using inorder traversal

Last Updated : 30 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a Binary Tree (BT), the task is to convert it to a Doubly Linked List (DLL) in place. The left and right pointers in nodes will be used as previous and next pointers respectively in converted DLL. The order of nodes in DLL must be the same as the order of the given Binary Tree. The first node of Inorder traversal (leftmost node in BT) must be the head node of the DLL.

Examples:

Input:

Convert-Binary-Tree-to-Doubly-Linked-List-using-inorder-traversal-ex-1

Output:

Convert-Binary-Tree-to-Doubly-Linked-List-using-inorder-traversal-1


Explanation: The above binary tree is converted into doubly linked list where left pointer of the binary tree node act as the previous node and right pointer of the binary tree node act as the next node.


Input:

Convert-Binary-Tree-to-Doubly-Linked-List-using-inorder-traversal-ex-2

Output:

Convert-Binary-Tree-to-Doubly-Linked-List-using-inorder-traversal-2


Explanation: The above binary tree is converted into doubly linked list where left pointer of the binary tree node act as the previous node and right pointer of the binary tree node act as the next node.


Table of Content

  • [Naive Approach] Using Recursion - O(n) Time and O(h) Space
  • [Expected Approach] Using Morris Traversal Algorithm - O(n) Time and O(1) Space

[Naive Approach] Using Recursion - O(n) Time and O(h) Space

The idea is to recursively traverse the binary tree using inorder traversal. At each node, if left subtree exists, find theinorder predecessor, then process the left subtree and link the current node and predecessor. If right subtree exists, then find theinorder successor, process the right subtree and then link the current node and successor node.

Below is the implementation of the above approach:

C++
// C++ program for in-place // conversion of Binary Tree to DLL #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node* left;     Node* right;     Node (int x) {         data = x;         left = nullptr;       	right = nullptr;     } };  void inorder(Node* root) {          // if left subtree exists         if (root->left){                  // find the inorder predecessor of root node         Node* pred  = root->left;         while (pred->right){             pred = pred->right;         }                  // process the left subtree         inorder(root->left);                  // link the predecessor and root node         pred->right = root;         root->left = pred;     }          // if right subtree exists     if (root->right) {                  // find the inorder successor of root node         Node* succ = root->right;         while (succ->left) {             succ = succ->left;         }                  // process the right subtree         inorder(root->right);                  // link the successor and root node         root->right = succ;         succ->left = root;     } }  Node* bToDLL(Node* root){          // return if root is null     if (root == nullptr) return root;          // find the head of dll     Node* head = root;     while (head->left != nullptr)          head = head->left;              // recursively convert the tree into dll     inorder(root);          return head; }  void printList(Node* head){     Node* curr = head;          while (curr != NULL) {         cout << curr->data << " ";         curr = curr->right;     }     cout<<endl; }  int main() {          // Create a hard coded binary tree     //          10     //         /  \     //       12    15         //      / \    /     //     25 30  36     Node* root = new Node(10);     root->left = new Node(12);     root->right = new Node(15);     root->left->left = new Node(25);     root->left->right = new Node(30);     root->right->left = new Node(36);      Node* head = bToDLL(root);      printList(head);      return 0; } 
C
// C program for in-place // conversion of Binary Tree to DLL #include <stdio.h> #include <stdlib.h>  struct Node {     int data;     struct Node* left;     struct Node* right; };  // Inorder traversal to link nodes void inorder(struct Node* root) {          // if left subtree exists     if (root->left) {                  // find the inorder predecessor of root node         struct Node* pred = root->left;         while (pred->right) {             pred = pred->right;         }                  // process the left subtree         inorder(root->left);                  // link the predecessor and root node         pred->right = root;         root->left = pred;     }      // if right subtree exists     if (root->right) {                  // find the inorder successor of root node         struct Node* succ = root->right;         while (succ->left) {             succ = succ->left;         }                  // process the right subtree         inorder(root->right);                  // link the successor and root node         root->right = succ;         succ->left = root;     } }  // Function to convert binary tree to doubly linked list struct Node* bToDLL(struct Node* root) {          // return if root is null     if (root == NULL) return root;          // find the head of dll     struct Node* head = root;     while (head->left != NULL)          head = head->left;              // recursively convert the tree into dll     inorder(root);          return head; }  void printList(struct Node* head) {     struct Node* curr = head;          while (curr != NULL) {         printf("%d ", curr->data);         curr = curr->right;     }     printf("\n"); }  struct Node* createNode(int x) {     struct Node* node =      	(struct Node*)malloc(sizeof(struct Node));     node->data = x;     node->left = NULL;     node->right = NULL;     return node; }  int main() {          // Create a hard coded binary tree     //          10     //         /  \     //       12    15         //      / \    /     //     25 30  36     struct Node* root = createNode(10);     root->left = createNode(12);     root->right = createNode(15);     root->left->left = createNode(25);     root->left->right = createNode(30);     root->right->left = createNode(36);      struct Node* head = bToDLL(root);      printList(head);      return 0; } 
Java
// Java program for in-place // conversion of Binary Tree to DLL class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = null;       	right = null;     } }  class GfG {      // Inorder traversal to link nodes     static void inorder(Node root) {                  // if left subtree exists         if (root.left != null) {                          // find the inorder predecessor of root node             Node pred = root.left;             while (pred.right != null) {                 pred = pred.right;             }                          // process the left subtree             inorder(root.left);                          // link the predecessor and root node             pred.right = root;             root.left = pred;         }          // if right subtree exists         if (root.right != null) {                          // find the inorder successor of root node             Node succ = root.right;             while (succ.left != null) {                 succ = succ.left;             }                          // process the right subtree             inorder(root.right);                          // link the successor and root node             root.right = succ;             succ.left = root;         }     }      // Function to convert binary tree to doubly linked list     static Node bToDLL(Node root) {                  // return if root is null         if (root == null) return root;                  // find the head of dll         Node head = root;         while (head.left != null)              head = head.left;                      // recursively convert the tree into dll         inorder(root);                  return head;     }      static void printList(Node head) {         Node curr = head;                  while (curr != null) {             System.out.print(curr.data + " ");             curr = curr.right;         }         System.out.println();     }      public static void main(String[] args) {                  // Create a hard coded binary tree         //          10         //         /  \         //       12    15             //      / \    /         //     25 30  36         Node root = new Node(10);         root.left = new Node(12);         root.right = new Node(15);         root.left.left = new Node(25);         root.left.right = new Node(30);         root.right.left = new Node(36);          Node head = bToDLL(root);                printList(head);     } } 
Python
# Python program for in-place # conversion of Binary Tree to DLL  class Node:     def __init__(self, new_value):         self.data = new_value         self.left = None         self.right = None  # Inorder traversal to link nodes def inorder(root):          # if left subtree exists     if root.left:                  # find the inorder predecessor of root node         pred = root.left         while pred.right:             pred = pred.right                  # process the left subtree         inorder(root.left)                  # link the predecessor and root node         pred.right = root         root.left = pred      # if right subtree exists     if root.right:                  # find the inorder successor of root node         succ = root.right         while succ.left:             succ = succ.left                  # process the right subtree         inorder(root.right)                  # link the successor and root node         root.right = succ         succ.left = root  # Function to convert binary tree to doubly linked list def bToDLL(root):          # return if root is null     if root is None:         return root          # find the head of dll     head = root     while head.left:         head = head.left          # recursively convert the tree into dll     inorder(root)          return head  def print_list(head):     curr = head     while curr:         print(curr.data, end=" ")         curr = curr.right     print()  if __name__ == "__main__":          # Create a hard coded binary tree     #          10     #         /  \     #       12    15         #      / \    /     #     25 30  36     root = Node(10)     root.left = Node(12)     root.right = Node(15)     root.left.left = Node(25)     root.left.right = Node(30)     root.right.left = Node(36)      head = bToDLL(root)      print_list(head) 
C#
// C# program for in-place // conversion of Binary Tree to DLL using System;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = right = null;     } }  class GfG {      // Inorder traversal to link nodes     static void Inorder(Node root) {                  // if left subtree exists         if (root.left != null) {                          // find the inorder predecessor of root node             Node pred = root.left;             while (pred.right != null) {                 pred = pred.right;             }                          // process the left subtree             Inorder(root.left);                          // link the predecessor and root node             pred.right = root;             root.left = pred;         }          // if right subtree exists         if (root.right != null) {                          // find the inorder successor of root node             Node succ = root.right;             while (succ.left != null) {                 succ = succ.left;             }                          // process the right subtree             Inorder(root.right);                          // link the successor and root node             root.right = succ;             succ.left = root;         }     }      // Function to convert binary tree to doubly linked list     static Node BToDLL(Node root) {                  // return if root is null         if (root == null) return root;                  // find the head of dll         Node head = root;         while (head.left != null)              head = head.left;                      // recursively convert the tree into dll         Inorder(root);                  return head;     }      static void PrintList(Node head) {         Node curr = head;                  while (curr != null) {             Console.Write(curr.data + " ");             curr = curr.right;         }         Console.WriteLine();     }      static void Main(string[] args) {                  // Create a hard coded binary tree         //          10         //         /  \         //       12    15             //      / \    /         //     25 30  36         Node root = new Node(10);         root.left = new Node(12);         root.right = new Node(15);         root.left.left = new Node(25);         root.left.right = new Node(30);         root.right.left = new Node(36);          Node head = BToDLL(root);          PrintList(head);     } } 
JavaScript
// JavaScript program for in-place // conversion of Binary Tree to DLL class Node {     constructor(new_value) {         this.data = new_value;         this.left = null;         this.right = null;     } }  // Inorder traversal to link nodes function inorder(root) {      // if left subtree exists     if (root.left) {          // find the inorder predecessor of root node         let pred = root.left;         while (pred.right) {             pred = pred.right;         }          // process the left subtree         inorder(root.left);          // link the predecessor and root node         pred.right = root;         root.left = pred;     }      // if right subtree exists     if (root.right) {          // find the inorder successor of root node         let succ = root.right;         while (succ.left) {             succ = succ.left;         }          // process the right subtree         inorder(root.right);          // link the successor and root node         root.right = succ;         succ.left = root;     } }  // Function to convert binary tree to doubly linked list function bToDLL(root) {      // return if root is null     if (root === null) return root;      // find the head of dll     let head = root;     while (head.left !== null)          head = head.left;      // recursively convert the tree into dll     inorder(root);      return head; }  function printList(head) {     let curr = head;      while (curr !== null) {         console.log(curr.data);         curr = curr.right;     } }  // Create a hard coded binary tree //          10 //         /  \ //       12    15     //      / \    / //     25 30  36 let root = new Node(10); root.left = new Node(12); root.right = new Node(15); root.left.left = new Node(25); root.left.right = new Node(30); root.right.left = new Node(36);  let head = bToDLL(root);  printList(head); 

Output
25 12 30 10 36 15  

Time Complexity: O(n), where n is the number of node in the tree.
Auxiliary Space: O(h), where h is the height of tree.

[Expected Approach] Using Morris Traversal Algorithm - O(n) Time and O(1) Space

The idea is to use Morris traversal algorithmto traverse the binary tree, while maintaining proper linkages between the nodes.

Step by step implementation:

  • Initialize pointers head and tail. head will point to the head node of the resultant dll and tail will point to the last node in dll.
  • Initialize another pointer curr, which will initially point to root node. Start traversing until curr is not NULL
  • If curr.left is null, then add the current node to the list (If head is empty, then make this node as head node) and move curr to curr.right.
  • If curr.left is not null, then find the inorder predecessor of the current node. Let that node be 'pred'. There are two possibilites:
    • If pred.right is equal to null, then create a link between pred and curr, by setting pred.right = curr and set curr = curr.left.
    • If pred->right is equal to curr, then this means we have traversed the left subtree and now we can add the curr node to the list. Then set curr = curr->right.
  • Return the head.
C++
// C++ program for in-place // conversion of Binary Tree to DLL #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node *left;     Node *right;     Node(int x) {         data = x;         left = nullptr;         right = nullptr;     } };  // Function to perform Morris Traversal and convert // binary tree to doubly linked list (DLL) Node* morrisTraversal(Node* root) {      // return if root is null     if (root == nullptr) return root;          // head and tail node for the dll     Node* head = nullptr, *tail = nullptr;          Node* curr = root;          while (curr != nullptr) {                  // if left tree does not exists,         // then add the curr node to the          // dll and set curr = curr->right         if (curr->left == nullptr) {             if (head == nullptr) {                 head = tail = curr;             }             else {                 tail->right = curr;                 curr->left = tail;                 tail = curr;             }             curr = curr->right;             }         else {             Node* pred = curr->left;                          // find the inorder predecessor              while (pred->right != nullptr && pred->right != curr) {                 pred = pred->right;             }                          // create a linkage between pred and             // curr              if (pred->right == nullptr) {                 pred->right = curr;                 curr = curr->left;             }                          // if pred->right = curr, it means              // we have processed the left subtree,             // and we can add curr node to list             else {                 tail->right = curr;                 curr->left = tail;                 tail = curr;                                  curr = curr->right;             }         }     }          return head; }  void printList(Node* head) {     Node* curr = head;      while (curr != nullptr) {         cout << curr->data << " ";         curr = curr->right;     }     cout << endl; }  int main() {      // Create a hard-coded binary tree     //          10     //         /  \     //       12    15     //      / \    /     //     25 30  36     Node* root = new Node(10);     root->left = new Node(12);     root->right = new Node(15);     root->left->left = new Node(25);     root->left->right = new Node(30);     root->right->left = new Node(36);      Node* head = morrisTraversal(root);      printList(head);      return 0; } 
C
// C program for in-place // conversion of Binary Tree to DLL #include <stdio.h> #include <stdlib.h>  struct Node {     int data;     struct Node* left;     struct Node* right; };  struct Node* morrisTraversal(struct Node* root) {          // return if root is null     if (root == NULL) return root;          // head and tail node for the dll     struct Node* head = NULL, *tail = NULL;          struct Node* curr = root;          while (curr != NULL) {                  // if left tree does not exists,         // then add the curr node to the          // dll and set curr = curr->right         if (curr->left == NULL) {             if (head == NULL) {                 head = tail = curr;             }             else {                 tail->right = curr;                 curr->left = tail;                 tail = curr;             }             curr = curr->right;             }         else {             struct Node* pred = curr->left;                          // find the inorder predecessor              while (pred->right != NULL                     && pred->right != curr) {                 pred = pred->right;             }                          // create a linkage between pred and             // curr              if (pred->right == NULL) {                 pred->right = curr;                 curr = curr->left;             }                          // if pred->right = curr, it means              // we have processed the left subtree,             // and we can add curr node to list             else {                 tail->right = curr;                 curr->left = tail;                 tail = curr;                                  curr = curr->right;             }         }     }          return head; }  void printList(struct Node* head) {     struct Node* curr = head;          while (curr != NULL) {         printf("%d ", curr->data);         curr = curr->right;     }     printf("\n"); }  struct Node* createNode(int new_value) {     struct Node* node =      		(struct Node*)malloc(sizeof(struct Node));     node->data = new_value;     node->left = node->right = NULL;     return node; }  int main() {          // Create a hard coded binary tree     //          10     //         /  \     //       12    15         //      / \    /     //     25 30  36     struct Node* root = createNode(10);     root->left = createNode(12);     root->right = createNode(15);     root->left->left = createNode(25);     root->left->right = createNode(30);     root->right->left = createNode(36);      struct Node* head = morrisTraversal(root);      printList(head);      return 0; } 
Java
// Java program for in-place // conversion of Binary Tree to DLL  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = null;       	right = null;     } }  class GfG {          static Node morrisTraversal(Node root) {                  // return if root is null         if (root == null) return root;                  // head and tail node for the dll         Node head = null, tail = null;                  Node curr = root;                  while (curr != null) {                          // if left tree does not exists,             // then add the curr node to the              // dll and set curr = curr.right             if (curr.left == null) {                 if (head == null) {                     head = tail = curr;                 }                 else {                     tail.right = curr;                     curr.left = tail;                     tail = curr;                 }                 curr = curr.right;                 } else {                 Node pred = curr.left;                                  // find the inorder predecessor                  while (pred.right != null                        && pred.right != curr) {                     pred = pred.right;                 }                                  // create a linkage between pred and                 // curr                  if (pred.right == null) {                     pred.right = curr;                     curr = curr.left;                 }                                  // if pred.right = curr, it means                  // we have processed the left subtree,                 // and we can add curr node to list                 else {                     tail.right = curr;                     curr.left = tail;                     tail = curr;                                          curr = curr.right;                 }             }         }                  return head;     }          static void printList(Node head) {         Node curr = head;                  while (curr != null) {             System.out.print(curr.data + " ");             curr = curr.right;         }         System.out.println();     }      public static void main(String[] args) {                  // Create a hard coded binary tree         //          10         //         /  \         //       12    15             //      / \    /         //     25 30  36         Node root = new Node(10);         root.left = new Node(12);         root.right = new Node(15);         root.left.left = new Node(25);         root.left.right = new Node(30);         root.right.left = new Node(36);          Node head = morrisTraversal(root);          printList(head);     } } 
Python
# Python program for in-place # conversion of Binary Tree to DLL  class Node:     def __init__(self, new_value):         self.data = new_value         self.left = None         self.right = None  def morris_traversal(root):          # return if root is None     if root is None:         return root          # head and tail node for the dll     head = None     tail = None          curr = root          while curr is not None:                  # if left tree does not exist,         # then add the curr node to the          # dll and set curr = curr.right         if curr.left is None:             if head is None:                 head = tail = curr             else:                 tail.right = curr                 curr.left = tail                 tail = curr             curr = curr.right             else:             pred = curr.left                          # find the inorder predecessor              while pred.right is not None \             and pred.right != curr:                 pred = pred.right                          # create a linkage between pred and curr              if pred.right is None:                 pred.right = curr                 curr = curr.left                          # if pred.right = curr, it means              # we have processed the left subtree,             # and we can add curr node to list             else:                 tail.right = curr                 curr.left = tail                 tail = curr                                  curr = curr.right          return head  def print_list(head):     curr = head          while curr is not None:         print(curr.data, end=" ")         curr = curr.right     print()  if __name__ == "__main__":          # Create a hard coded binary tree     #          10     #         /  \     #       12    15         #      / \    /     #     25 30  36     root = Node(10)     root.left = Node(12)     root.right = Node(15)     root.left.left = Node(25)     root.left.right = Node(30)     root.right.left = Node(36)      head = morris_traversal(root)      print_list(head) 
C#
// C# program for in-place // conversion of Binary Tree to DLL  using System;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = null;       	right = null;     } }  class GfG {          static Node MorrisTraversal(Node root) {                  // return if root is null         if (root == null) return root;                  // head and tail node for the dll         Node head = null, tail = null;                  Node curr = root;                  while (curr != null) {                          // if left tree does not exists,             // then add the curr node to the              // dll and set curr = curr.right             if (curr.left == null) {                 if (head == null) {                     head = tail = curr;                 } else {                     tail.right = curr;                     curr.left = tail;                     tail = curr;                 }                 curr = curr.right;                 } else {                 Node pred = curr.left;                                  // find the inorder predecessor                  while (pred.right != null                         && pred.right != curr) {                     pred = pred.right;                 }                                  // create a linkage between pred and                 // curr                  if (pred.right == null) {                     pred.right = curr;                     curr = curr.left;                 }                                  // if pred.right = curr, it means                  // we have processed the left subtree,                 // and we can add curr node to list                 else {                     tail.right = curr;                     curr.left = tail;                     tail = curr;                                          curr = curr.right;                 }             }         }                  return head;     }      static void PrintList(Node head) {         Node curr = head;                  while (curr != null) {             Console.Write(curr.data + " ");             curr = curr.right;         }         Console.WriteLine();     }      static void Main(string[] args) {                  // Create a hard coded binary tree         //          10         //         /  \         //       12    15             //      / \    /         //     25 30  36         Node root = new Node(10);         root.left = new Node(12);         root.right = new Node(15);         root.left.left = new Node(25);         root.left.right = new Node(30);         root.right.left = new Node(36);          Node head = MorrisTraversal(root);          PrintList(head);     } } 
JavaScript
// JavaScript program for in-place // conversion of Binary Tree to DLL  class Node {     constructor(new_value) {         this.data = new_value;         this.left = this.right = null;     } }  function morrisTraversal(root) {          // return if root is null     if (root === null) return root;          // head and tail node for the dll     let head = null, tail = null;          let curr = root;          while (curr !== null) {                  // if left tree does not exists,         // then add the curr node to the          // dll and set curr = curr.right         if (curr.left === null) {             if (head === null) {                 head = tail = curr;             } else {                 tail.right = curr;                 curr.left = tail;                 tail = curr;             }             curr = curr.right;             } else {             let pred = curr.left;                          // find the inorder predecessor              while (pred.right !== null && pred.right !== curr) {                 pred = pred.right;             }                          // create a linkage between pred and curr              if (pred.right === null) {                 pred.right = curr;                 curr = curr.left;             }                          // if pred.right = curr, it means              // we have processed the left subtree,             // and we can add curr node to list             else {                 tail.right = curr;                 curr.left = tail;                 tail = curr;                                  curr = curr.right;             }         }     }          return head; }  function printList(head) {     let curr = head;          while (curr !== null) {         console.log(curr.data);         curr = curr.right;     } }  // Create a hard coded binary tree //          10 //         /  \ //       12    15     //      / \    / //     25 30  36 let root = new Node(10); root.left = new Node(12); root.right = new Node(15); root.left.left = new Node(25); root.left.right = new Node(30); root.right.left = new Node(36);  let head = morrisTraversal(root);  printList(head); 

Output
25 12 30 10 36 15  

Time Complexity: O(n), where n is the number of nodes in tree.
Auxiliary Space: O(1)
 


Next Article
Convert Binary Tree to Doubly Linked List using inorder traversal

K

kartik
Improve
Article Tags :
  • Linked List
  • Tree
  • DSA
  • Microsoft
  • Amazon
  • Goldman Sachs
  • doubly linked list
Practice Tags :
  • Amazon
  • Goldman Sachs
  • Microsoft
  • Linked List
  • Tree

Similar Reads

    Binary Tree Data Structure
    A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
    3 min read
    Introduction to Binary Tree
    Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Introduction to Binary TreeRepresentation of Bina
    15+ min read
    Properties of Binary Tree
    This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levelsBinary tree representationNote: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A bina
    4 min read
    Applications, Advantages and Disadvantages of Binary Tree
    A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
    2 min read
    Binary Tree (Array implementation)
    Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
    6 min read
    Maximum Depth of Binary Tree
    Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node.Examples:Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which has
    11 min read
    Insertion in a Binary Tree in level order
    Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner.Examples:Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner.Approach:The
    8 min read
    Deletion in a Binary Tree
    Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
    12 min read
    Enumeration of Binary Trees
    A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
    3 min read

    Types of Binary Tree

    Types of Binary Tree
    We have discussed Introduction to Binary Tree in set 1 and the Properties of Binary Tree in Set 2. In this post, common types of Binary Trees are discussed. Types of Binary Tree based on the number of children:Following are the types of Binary Tree based on the number of children: Full Binary TreeDe
    7 min read
    Complete Binary Tree
    We know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
    7 min read
    Perfect Binary Tree
    What is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences