Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • C++
  • Standard Template Library
  • STL Vector
  • STL List
  • STL Set
  • STL Map
  • STL Stack
  • STL Queue
  • STL Priority Queue
  • STL Interview Questions
  • STL Cheatsheet
  • C++ Templates
  • C++ Functors
  • C++ Iterators
Open In App
Next Article:
Check if it is possible to sort an array with conditional swapping of adjacent allowed
Next article icon

Convert an Array to reduced form using Vector of pairs

Last Updated : 17 Oct, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array with n distinct elements, convert the given array to a form where all elements are in range from 0 to n-1. The order of elements is same, i.e., 0 is placed in place of smallest element, 1 is placed for second smallest element, … n-1 is placed for largest element.

Input:  arr[] = {10, 40, 20}
Output: arr[] = {0, 2, 1}
Input: arr[] = {5, 10, 40, 30, 20}
Output: arr[] = {0, 1, 4, 3, 2}

We have discussed simple and hashing based solutions. In this post, a new solution is discussed. The idea is to create a vector of pairs. Every element of pair contains element and index. We sort vector by array values. After sorting, we copy indexes to original array. 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Converts arr[0..n-1] to reduced form.
void convert(int arr[], int n)
{
    // A vector of pairs. Every element of
    // pair contains array element and its
    // index
    vector<pair<int, int> > v;
 
    // Put all elements and their index in
    // the vector
    for (int i = 0; i < n; i++)
        v.push_back(make_pair(arr[i], i));
 
    // Sort the vector by array values
    sort(v.begin(), v.end());
 
    // Put indexes of modified vector in arr[]
    for (int i = 0; i < n; i++)
        arr[v[i].second] = i;
}
 
// Utility function to print an array.
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver program to test above method
int main()
{
    int arr[] = { 10, 20, 15, 12, 11, 50 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << "Given Array is \n";
    printArr(arr, n);
 
    convert(arr, n);
 
    cout << "\n\nConverted Array is \n";
    printArr(arr, n);
 
    return 0;
}
 
 

Java




// Java equivalent of the code
import java.util.*;
 
public class Main {
     
    // Converts arr[0..n-1] to reduced form.
    static void convert(int arr[], int n)
    {
        // A vector of pairs. Every element of
        // pair contains array element and its
        // index
        List<Pair> v = new ArrayList<>();
 
        // Put all elements and their index in
        // the vector
        for (int i = 0; i < n; i++)
            v.add(new Pair(arr[i], i));
 
        // Sort the vector by array values
        Collections.sort(v, new SortByVal());
 
        // Put indexes of modified vector in arr[]
        for (int i = 0; i < n; i++)
            arr[v.get(i).getIndex()] = i;
    }
 
    // Utility function to print an array.
    static void printArr(int arr[], int n)
    {
        for (int i = 0; i < n; i++)
            System.out.print(arr[i] + " ");
    }
 
    // Driver program to test above method
    public static void main (String[] args)
    {
        int arr[] = { 10, 20, 15, 12, 11, 50 };
        int n = arr.length;
 
        System.out.println("Given Array is \n");
        printArr(arr, n);
 
        convert(arr, n);
 
        System.out.println("\n\nConverted Array is \n");
        printArr(arr, n);
    }
 
    // class to store array elements and its
    // index.
    static class Pair {
   
        int val;
        int index;
   
        public Pair(int val, int index)
        {
            this.val = val;
            this.index = index;
        }
   
        public int getVal()
        {
            return val;
        }
   
        public int getIndex()
        {
            return index;
        }
    }
   
    // Comparator to sort the vector elements
    // according to their values
    static class SortByVal implements Comparator<Pair> {
   
        public int compare(Pair a, Pair b)
        {
            return a.getVal() - b.getVal();
        }
    }
}
 
 

Python3




# Converts arr[0..n-1] to reduced form.
def convert(arr, n):
     
    # A list of tuples. Every element of
    # tuple contains array element and its
    # index
    v = []
 
    # Put all elements and their index in
    # the list
    for i in range(n):
        v.append((arr[i], i))
 
    # Sort the list by array values
    v.sort()
 
    # Put indexes of modified list in arr[]
    for i in range(n):
        arr[v[i][1]] = i
 
# Utility function to print an array.
def printArr(arr, n):
    for i in range(n):
        print(arr[i], end=" ")
 
# Driver program to test above method
arr = [10, 20, 15, 12, 11, 50]
n = len(arr)
 
print("Given Array is ")
printArr(arr, n)
 
convert(arr, n)
 
print("\n\nConverted Array is ")
printArr(arr, n)
 
# This code is contributed by Prasad Kandekar(prasad264)
 
 

C#




using System;
using System.Collections.Generic;
 
public class Program {
    // Converts arr[0..n-1] to reduced form.
    static void Convert(int[] arr, int n)
    {
        // A list of pairs. Every element of pair contains
        // array element and its index
        List<Pair> v = new List<Pair>();
 
        // Put all elements and their index in the list
        for (int i = 0; i < n; i++)
            v.Add(new Pair(arr[i], i));
 
        // Sort the list by array values
        v.Sort(new SortByVal());
 
        // Put indexes of modified list in arr[]
        for (int i = 0; i < n; i++)
            arr[v[i].GetIndex()] = i;
    }
 
    // Utility function to print an array.
    static void PrintArr(int[] arr, int n)
    {
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }
 
    // Driver program to test above method
    public static void Main()
    {
        int[] arr = { 10, 20, 15, 12, 11, 50 };
        int n = arr.Length;
 
        Console.WriteLine("Given Array is ");
        PrintArr(arr, n);
 
        Convert(arr, n);
 
        Console.WriteLine("\n\nConverted Array is");
        PrintArr(arr, n);
    }
 
    // class to store array elements and its index.
    class Pair {
        int val;
        int index;
 
        public Pair(int val, int index)
        {
            this.val = val;
            this.index = index;
        }
 
        public int GetVal() { return val; }
 
        public int GetIndex() { return index; }
    }
 
    // Comparator to sort the list elements
    // according to their values
    class SortByVal : IComparer<Pair> {
        public int Compare(Pair a, Pair b)
        {
            return a.GetVal() - b.GetVal();
        }
    }
}
 
 

Javascript




// Converts arr[0..n-1] to reduced form.
function convert(arr, n) {
     
    // An array of pairs. Every element of
    // pair contains array element and its
    // index
    let v = [];
 
    // Put all elements and their index in
    // the array
    for (let i = 0; i < n; i++)
        v.push([arr[i], i]);
 
    // Sort the array by array values
    v.sort((a, b) => a[0] - b[0]);
 
    // Put indexes of modified array in arr[]
    for (let i = 0; i < n; i++)
        arr[v[i][1]] = i;
}
 
// Utility function to print an array.
function printArr(arr, n) {
    for (let i = 0; i < n; i++)
        console.log(arr[i] + " ");
}
 
// Driver program to test above method
let arr = [10, 20, 15, 12, 11, 50];
let n = arr.length;
 
console.log("Given Array is ");
printArr(arr, n);
 
convert(arr, n);
 
console.log("\n\nConverted Array is ");
printArr(arr, n);
 
// This code is contributed by prasad264
 
 
Output
Given Array is  10 20 15 12 11 50   Converted Array is  0 4 3 2 1 5    

Time Complexity : O(n Log n) 
Auxiliary Space : O(n) 

Another Approach:

1) Create a copy of the input array and sort it in non-decreasing order.
2) Create a map where each element of the sorted array is mapped to its corresponding index in the range 0 to n-1.
3) Traverse the input array and for each element, replace it with the value obtained from the map.

C++




#include <bits/stdc++.h>
using namespace std;
 
// Converts arr[0..n-1] to reduced form.
void convert(int arr[], int n)
{
    // Make a copy of the input array
    int sorted_arr[n];
    copy(arr, arr+n, sorted_arr);
 
    // Sort the copy in non-decreasing order
    sort(sorted_arr, sorted_arr+n);
 
    // Map each element of the sorted array to its index in the range 0 to n-1
    unordered_map<int, int> mp;
    for (int i = 0; i < n; i++) {
        mp[sorted_arr[i]] = i;
    }
 
    // Replace each element of the input array with its corresponding index
    for (int i = 0; i < n; i++) {
        arr[i] = mp[arr[i]];
    }
}
 
// Utility function to print an array.
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver program to test above method
int main()
{
    int arr[] = { 10, 20, 15, 12, 11, 50 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << "Given Array is \n";
    printArr(arr, n);
 
    convert(arr, n);
 
    cout << "\n\nConverted Array is \n";
    printArr(arr, n);
 
    return 0;
}
 
 

Java




import java.util.*;
 
public class Main {
    // Converts arr[0..n-1] to reduced form.
    public static void convert(int arr[], int n)
    {
        // Make a copy of the input array
        int[] sorted_arr = Arrays.copyOf(arr, n);
 
        // Sort the copy in non-decreasing order
        Arrays.sort(sorted_arr);
 
        // Map each element of the sorted array to its index
        // in the range 0 to n-1
        HashMap<Integer, Integer> mp
            = new HashMap<Integer, Integer>();
        for (int i = 0; i < n; i++) {
            mp.put(sorted_arr[i], i);
        }
 
        // Replace each element of the input array with its
        // corresponding index
        for (int i = 0; i < n; i++) {
            arr[i] = mp.get(arr[i]);
        }
    }
 
    // Utility function to print an array.
    public static void printArr(int arr[], int n)
    {
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
    }
 
    // Driver program to test above method
    public static void main(String[] args)
    {
        int arr[] = { 10, 20, 15, 12, 11, 50 };
        int n = arr.length;
 
        System.out.println("Given Array is ");
        printArr(arr, n);
 
        convert(arr, n);
 
        System.out.println("\n\nConverted Array is ");
        printArr(arr, n);
    }
}
// This code is contributed by Prajwal Kandekar
 
 

Python3




def convert(arr, n):
    # Make a copy of the input array
    sorted_arr = arr.copy()
 
    # Sort the copy in non-decreasing order
    sorted_arr.sort()
 
    # Map each element of the sorted array to its index in the range 0 to n-1
    mp = {}
    for i in range(n):
        mp[sorted_arr[i]] = i
 
    # Replace each element of the input array with its corresponding index
    for i in range(n):
        arr[i] = mp[arr[i]]
 
 
def print_arr(arr, n):
    for i in range(n):
        print(arr[i], end=' ')
    print()
 
 
# Driver program to test above method
if __name__ == '__main__':
    arr = [10, 20, 15, 12, 11, 50]
    n = len(arr)
 
    print("Given Array is ")
    print_arr(arr, n)
 
    convert(arr, n)
 
    print("\nConverted Array is ")
    print_arr(arr, n)
# This code is contributed by Prajwal Kandekar
 
 

C#




using System;
using System.Collections.Generic;
 
public class GFG {
    // Converts arr[0..n-1] to reduced form.
    static void Convert(int[] arr, int n)
    {
        // Make a copy of the input array
        int[] sortedArr = new int[n];
        Array.Copy(arr, sortedArr, n);
 
        // Sort the copy in ascending order
        Array.Sort(sortedArr);
 
        // Map each element of the sorted array to its index
        // in the range 0 to n-1
        Dictionary<int, int> mp
            = new Dictionary<int, int>();
        for (int i = 0; i < n; i++) {
            mp.Add(sortedArr[i], i);
        }
 
        // Replace each element of the input array with its
        // corresponding index
        for (int i = 0; i < n; i++) {
            arr[i] = mp[arr[i]];
        }
    }
 
    // Utility function to print an array.
    static void PrintArr(int[] arr, int n)
    {
        for (int i = 0; i < n; i++) {
            Console.Write(arr[i] + " ");
        }
    }
   
    // Driver program to test above method
    static public void Main()
    {
        int[] arr = { 10, 20, 15, 12, 11, 50 };
        int n = arr.Length;
 
        Console.WriteLine("Given Array is ");
        PrintArr(arr, n);
 
        Convert(arr, n);
 
        Console.WriteLine("\n\nConverted Array is ");
        PrintArr(arr, n);
    }
}
//This code is contributed by Rohit Singh
 
 

Javascript




function convert(arr, n) {
  // Make a copy of the input array
  let sorted_arr = [...arr];
 
  // Sort the copy in non-decreasing order
  sorted_arr.sort((a, b) => a - b);
 
  // Map each element of the sorted array to its index in the range 0 to n-1
  let mp = {};
  for (let i = 0; i < n; i++) {
    mp[sorted_arr[i]] = i;
  }
 
  // Replace each element of the input array with its corresponding index
  for (let i = 0; i < n; i++) {
    arr[i] = mp[arr[i]];
  }
}
 
function print_arr(arr, n) {
  for (let i = 0; i < n; i++) {
    process.stdout.write(`${arr[i]} `);
  }
  console.log();
}
 
// Driver program to test above method
let arr = [10, 20, 15, 12, 11, 50];
let n = arr.length;
 
process.stdout.write("Given Array is \n");
print_arr(arr, n);
 
convert(arr, n);
 
process.stdout.write("\nConverted Array is \n");
print_arr(arr, n);
 
 
Output
Given Array is  10 20 15 12 11 50   Converted Array is  0 4 3 2 1 5    

Time Complexity: O(n log n) where n is the size of the input array. This is because the function creates a copy of the input array using the “copy” function, which takes O(n) time, sorts the copy using the “sort” function, which has a time complexity of O(n log n)

Space Complexity: O(n) we are using extra space as a map.



Next Article
Check if it is possible to sort an array with conditional swapping of adjacent allowed

A

Arpit Gupta
Improve
Article Tags :
  • Arrays
  • DSA
  • Sorting
  • STL
Practice Tags :
  • Arrays
  • Sorting
  • STL

Similar Reads

  • Sorting Algorithms
    A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
    3 min read
  • Introduction to Sorting Techniques – Data Structure and Algorithm Tutorials
    Sorting refers to rearrangement of a given array or list of elements according to a comparison operator on the elements. The comparison operator is used to decide the new order of elements in the respective data structure. Why Sorting Algorithms are ImportantThe sorting algorithm is important in Com
    3 min read
  • Most Common Sorting Algorithms

    • Selection Sort
      Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted. First we find the smallest element a
      8 min read
    • Bubble Sort Algorithm
      Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high. We sort the array using multiple passes. After the fi
      8 min read
    • Insertion Sort Algorithm
      Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
      9 min read
    • Merge Sort - Data Structure and Algorithms Tutorials
      Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. How do
      14 min read
    • Quick Sort
      QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
      13 min read
    • Heap Sort - Data Structures and Algorithms Tutorials
      Heap sort is a comparison-based sorting technique based on Binary Heap Data Structure. It can be seen as an optimization over selection sort where we first find the max (or min) element and swap it with the last (or first). We repeat the same process for the remaining elements. In Heap Sort, we use
      14 min read
    • Counting Sort - Data Structures and Algorithms Tutorials
      Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
      9 min read
    geeksforgeeks-footer-logo
    Corporate & Communications Address:
    A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
    Registered Address:
    K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
    GFG App on Play Store GFG App on App Store
    Advertise with us
    • Company
    • About Us
    • Legal
    • Privacy Policy
    • In Media
    • Contact Us
    • Advertise with us
    • GFG Corporate Solution
    • Placement Training Program
    • Languages
    • Python
    • Java
    • C++
    • PHP
    • GoLang
    • SQL
    • R Language
    • Android Tutorial
    • Tutorials Archive
    • DSA
    • Data Structures
    • Algorithms
    • DSA for Beginners
    • Basic DSA Problems
    • DSA Roadmap
    • Top 100 DSA Interview Problems
    • DSA Roadmap by Sandeep Jain
    • All Cheat Sheets
    • Data Science & ML
    • Data Science With Python
    • Data Science For Beginner
    • Machine Learning
    • ML Maths
    • Data Visualisation
    • Pandas
    • NumPy
    • NLP
    • Deep Learning
    • Web Technologies
    • HTML
    • CSS
    • JavaScript
    • TypeScript
    • ReactJS
    • NextJS
    • Bootstrap
    • Web Design
    • Python Tutorial
    • Python Programming Examples
    • Python Projects
    • Python Tkinter
    • Python Web Scraping
    • OpenCV Tutorial
    • Python Interview Question
    • Django
    • Computer Science
    • Operating Systems
    • Computer Network
    • Database Management System
    • Software Engineering
    • Digital Logic Design
    • Engineering Maths
    • Software Development
    • Software Testing
    • DevOps
    • Git
    • Linux
    • AWS
    • Docker
    • Kubernetes
    • Azure
    • GCP
    • DevOps Roadmap
    • System Design
    • High Level Design
    • Low Level Design
    • UML Diagrams
    • Interview Guide
    • Design Patterns
    • OOAD
    • System Design Bootcamp
    • Interview Questions
    • Inteview Preparation
    • Competitive Programming
    • Top DS or Algo for CP
    • Company-Wise Recruitment Process
    • Company-Wise Preparation
    • Aptitude Preparation
    • Puzzles
    • School Subjects
    • Mathematics
    • Physics
    • Chemistry
    • Biology
    • Social Science
    • English Grammar
    • Commerce
    • World GK
    • GeeksforGeeks Videos
    • DSA
    • Python
    • Java
    • C++
    • Web Development
    • Data Science
    • CS Subjects
    @GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
    We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
    Lightbox
    Improvement
    Suggest Changes
    Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
    geeksforgeeks-suggest-icon
    Create Improvement
    Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
    geeksforgeeks-improvement-icon
    Suggest Changes
    min 4 words, max Words Limit:1000

    Thank You!

    Your suggestions are valuable to us.

    What kind of Experience do you want to share?

    Interview Experiences
    Admission Experiences
    Career Journeys
    Work Experiences
    Campus Experiences
    Competitive Exam Experiences