Convert a Binary Tree into Doubly Linked List in spiral fashion
Last Updated : 30 Sep, 2024
Given a binary tree, convert it into a doubly linked list (DLL) where the nodes are arranged in a spiral order. The left pointer of the binary tree node should act as the previous node in the DLL, and the right pointer should act as the next node in the DLL.
The solution should not allocate extra memory for the DLL nodes. It should use the existing binary tree nodes for creating the DLL, meaning only changes to the pointers are allowed.
Example:
Input:
Output:
Explanation: The above binary tree is converted into doubly linked list where left pointer of the binary tree node act as the previous node and right pointer of the binary tree node act as the next node.
Approach:
The idea is to use a deque (double-ended queue) that can be expanded or contracted from both ends (either from its front or its back). We perform a level-order traversal, but to maintain spiral order, for every odd level, we dequeue a node from the front and insert its left and right children at the back of the deque. For each even level, we dequeue a node from the back and insert its right and left children at the front of the deque.
We also maintain a stack to store the binary tree nodes. Whenever we pop nodes from the deque, we push that node into the stack. Later, we pop all the nodes from the stack and insert them at the beginning of the list.
Below is the implementation of the above approach:
C++ // C++ program to convert Binary Tree into Doubly // Linked List where the nodes are represented spirally #include <bits/stdc++.h> using namespace std; class Node { public: int data; Node* left; Node* right; Node(int val) { data = val; left = right = nullptr; } }; // Function to insert node at the // front of DLL and return the new head Node* push(Node* head, Node* node) { node->right = head; node->left = nullptr; if (head != nullptr) { head->left = node; } return node; } // Function to perform spiral level-order traversal // and convert binary tree into DLL Node* spiralToDLL(Node* root) { if (root == nullptr) return nullptr; deque<Node*> dq; dq.push_front(root); stack<Node*> stk; Node* head = nullptr; bool leftToRight = true; // Perform spiral level order traversal while (!dq.empty()) { int levelSize = dq.size(); while (levelSize--) { if (leftToRight) { // Left-to-right traversal: pop from front Node* node = dq.front(); dq.pop_front(); // Push children for next level (left to right) if (node->left) dq.push_back(node->left); if (node->right) dq.push_back(node->right); stk.push(node); } else { // Right-to-left traversal: pop from back Node* node = dq.back(); dq.pop_back(); // Push children for next level (right to left) if (node->right) dq.push_front(node->right); if (node->left) dq.push_front(node->left); stk.push(node); } } leftToRight = !leftToRight; } // Pop nodes from stack and form the DLL while (!stk.empty()) { Node* node = stk.top(); stk.pop(); // Insert node at the front of DLL and update head head = push(head, node); } // Return the head of the created DLL return head; } void printList(Node* node) { while (node != nullptr) { cout << node->data << " "; node = node->right; } cout << endl; } int main() { // Example tree: // 1 // / \ // 2 3 // / \ / \ // 4 5 6 7 Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); root->right->left = new Node(6); root->right->right = new Node(7); Node* head = spiralToDLL(root); printList(head); return 0; }
Java // Java program to convert Binary Tree into Doubly // Linked List where the nodes are represented spirally import java.util.*; class Node { int data; Node left, right; Node(int val) { data = val; left = right = null; } } // Function to insert node at the // front of DLL and return the new head class GfG { static Node push(Node head, Node node) { node.right = head; node.left = null; if (head != null) { head.left = node; } return node; } // Function to perform spiral level-order traversal // and convert binary tree into DLL static Node spiralToDLL(Node root) { if (root == null) return null; Deque<Node> dq = new ArrayDeque<>(); dq.addFirst(root); Stack<Node> stk = new Stack<>(); Node head = null; boolean leftToRight = true; // Perform spiral level order traversal while (!dq.isEmpty()) { int levelSize = dq.size(); while (levelSize-- > 0) { if (leftToRight) { // Left-to-right traversal: pop from front Node node = dq.pollFirst(); // Push children for next level (left to right) if (node.left != null) dq.addLast(node.left); if (node.right != null) dq.addLast(node.right); stk.push(node); } else { // Right-to-left traversal: pop from back Node node = dq.pollLast(); // Push children for next level (right to left) if (node.right != null) dq.addFirst(node.right); if (node.left != null) dq.addFirst(node.left); stk.push(node); } } leftToRight = !leftToRight; } // Pop nodes from stack and form the DLL while (!stk.isEmpty()) { Node node = stk.pop(); // Insert node at the front of DLL and update head head = push(head, node); } // Return the head of the created DLL return head; } static void printList(Node node) { while (node != null) { System.out.print(node.data + " "); node = node.right; } System.out.println(); } public static void main(String[] args) { // Example tree: // 1 // / \ // 2 3 // / \ / \ // 4 5 6 7 Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7); Node head = spiralToDLL(root); printList(head); } }
Python # Python program to convert Binary Tree into Doubly # Linked List where the nodes are represented spirally from collections import deque class Node: def __init__(self, data): self.data = data self.left = self.right = None # Function to insert node at the # front of DLL and return the new head def push(head, node): node.right = head node.left = None if head: head.left = node return node # Function to perform spiral level-order traversal # and convert binary tree into DLL def spiralToDLL(root): if not root: return None dq = deque([root]) stk = [] head = None leftToRight = True # Perform spiral level order traversal while dq: levelSize = len(dq) for _ in range(levelSize): if leftToRight: # Left-to-right traversal: pop from front node = dq.popleft() # Push children for next level (left to right) if node.left: dq.append(node.left) if node.right: dq.append(node.right) stk.append(node) else: # Right-to-left traversal: pop from back node = dq.pop() # Push children for next level (right to left) if node.right: dq.appendleft(node.right) if node.left: dq.appendleft(node.left) stk.append(node) leftToRight = not leftToRight # Pop nodes from stack and form the DLL while stk: node = stk.pop() # Insert node at the front of DLL and update head head = push(head, node) # Return the head of the created DLL return head def printList(node): while node: print(node.data, end=" ") node = node.right print() if __name__ == "__main__": # Example tree: # 1 # / \ # 2 3 # / \ / \ # 4 5 6 7 root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) head = spiralToDLL(root) printList(head)
C# // C# program to convert Binary Tree into Doubly // Linked List where the nodes are represented spirally using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int val) { data = val; left = right = null; } } class GfG { // Function to insert node at the // front of DLL and return the new head static Node Push(Node head, Node node) { node.right = head; node.left = null; if (head != null) { head.left = node; } return node; } // Function to perform spiral level-order traversal // and convert binary tree into DLL static Node SpiralToDLL(Node root) { if (root == null) return null; LinkedList<Node> dq = new LinkedList<Node>(); dq.AddFirst(root); Stack<Node> stk = new Stack<Node>(); Node head = null; bool leftToRight = true; // Perform spiral level order traversal while (dq.Count > 0) { int levelSize = dq.Count; while (levelSize-- > 0) { if (leftToRight) { // Left-to-right traversal: pop from front Node node = dq.First.Value; dq.RemoveFirst(); // Push children for next level (left to right) if (node.left != null) dq.AddLast(node.left); if (node.right != null) dq.AddLast(node.right); stk.Push(node); } else { // Right-to-left traversal: pop from back Node node = dq.Last.Value; dq.RemoveLast(); // Push children for next level (right to left) if (node.right != null) dq.AddFirst(node.right); if (node.left != null) dq.AddFirst(node.left); stk.Push(node); } } leftToRight = !leftToRight; } // Pop nodes from stack and form the DLL while (stk.Count > 0) { Node node = stk.Pop(); // Insert node at the front of DLL and update head head = Push(head, node); } // Return the head of the created DLL return head; } static void PrintList(Node node) { while (node != null) { Console.Write(node.data + " "); node = node.right; } Console.WriteLine(); } static void Main(string[] args) { // Example tree: // 1 // / \ // 2 3 // / \ / \ // 4 5 6 7 Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7); Node head = SpiralToDLL(root); PrintList(head); } }
JavaScript // JavaScript program to convert Binary Tree into Doubly // Linked List where the nodes are represented spirally class Node { constructor(data) { this.data = data; this.left = this.right = null; } } // Function to insert node at the // front of DLL and return the new head function push(head, node) { node.right = head; node.left = null; if (head !== null) { head.left = node; } return node; } // Function to perform spiral level-order traversal // and convert binary tree into DLL function spiralToDLL(root) { if (root === null) return null; let dq = []; dq.push(root); let stk = []; let head = null; let leftToRight = true; // Perform spiral level order traversal while (dq.length > 0) { let levelSize = dq.length; while (levelSize--) { if (leftToRight) { // Left-to-right traversal: pop from front let node = dq.shift(); // Push children for next level (left to right) if (node.left !== null) dq.push(node.left); if (node.right !== null) dq.push(node.right); stk.push(node); } else { // Right-to-left traversal: pop from back let node = dq.pop(); // Push children for next level (right to left) if (node.right !== null) dq.unshift(node.right); if (node.left !== null) dq.unshift(node.left); stk.push(node); } } leftToRight = !leftToRight; } // Pop nodes from stack and form the DLL while (stk.length > 0) { let node = stk.pop(); // Insert node at the front of DLL and update head head = push(head, node); } // Return the head of the created DLL return head; } function printList(node) { while (node !== null) { console.log(node.data); node = node.right; } } // Example tree: // 1 // / \ // 2 3 // / \ / \ // 4 5 6 7 let root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7); let head = spiralToDLL(root); printList(head);
Time Complexity: O(n), as we are using a loop to traverse n times.
Auxiliary Space: O(n), as we are using extra space for dequeue and stack.
Related articles:
Similar Reads
Binary Tree Data Structure A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
3 min read
Introduction to Binary Tree Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Introduction to Binary TreeRepresentation of Bina
15+ min read
Properties of Binary Tree This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levelsBinary tree representationNote: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A bina
4 min read
Applications, Advantages and Disadvantages of Binary Tree A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
2 min read
Binary Tree (Array implementation) Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
6 min read
Maximum Depth of Binary Tree Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node.Examples:Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which has
11 min read
Insertion in a Binary Tree in level order Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner.Examples:Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner.Approach:The
8 min read
Deletion in a Binary Tree Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
12 min read
Enumeration of Binary Trees A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
3 min read
Types of Binary Tree