Frequency Division and Time division multiplexing Last Updated : 25 Mar, 2023 Comments Improve Suggest changes Like Article Like Report Multiplexing is used in cases where the signals of lower bandwidth and the transmitting media is having higher bandwidth. In this case, the possibility of sending a number of signals is more. In this, the signals are combined into one and are sent over a link that has greater bandwidth of media than the communicating nodes. 1. Frequency Division Multiplexing (FDM): In this, a number of signals are transmitted at the same time, and each source transfers its signals in the allotted frequency range. There is a suitable frequency gap between the 2 adjacent signals to avoid over-lapping. Since the signals are transmitted in the allotted frequencies so this decreases the probability of collision. The frequency spectrum is divided into several logical channels, in which every user feels that they possess a particular bandwidth. A number of signals are sent simultaneously at the same time allocating separate frequency bands or channels to each signal. It is used in radio and TV transmission. Therefore to avoid interference between two successive channels Guard bands are used. Application of FDM: In the first generation of mobile phones, FDM was used.The use of FDM in television broadcastingFDM is used to broadcast FM and AM radio frequencies.2. Time Division Multiplexing (TDM): This happens when the data transmission rate of media is greater than that of the source, and each signal is allotted a definite amount of time. These slots are so small that all transmissions appear to be parallel. In frequency division multiplexing all the signals operate at the same time with different frequencies, but in time-division multiplexing, all the signals operate with the same frequency at different times. It is of the following types: 1. Synchronous TDM: The time slots are pre-assigned and fixed. This slot is even given if the source is not ready with data at this time. In this case, the slot is transmitted empty. It is used for multiplexing digitized voice streams. 2. Asynchronous (or statistical) TDM: The slots are allocated dynamically depending on the speed of the source or their ready state. It dynamically allocates the time slots according to different input channels' needs, thus saving the channel capacity. Advantages of Frequency Division Multiplexing (FDM): Efficient Use of Bandwidth: FDM allows multiple signals to be transmitted over a single communication channel, which can lead to more efficient use of available bandwidth.No Time Synchronization Required: FDM does not require precise time synchronization between the transmitting and receiving devices, making it easier to implement.Low Implementation Cost: FDM is a relatively simple technique that does not require sophisticated hardware or software, making it less expensive to implement. Disadvantages of Frequency Division Multiplexing (FDM): Limited Capacity: FDM is limited in terms of the number of signals that can be transmitted over a single communication channel, which can be a disadvantage in applications where a large number of signals need to be transmitted.Interference: FDM can be susceptible to interference from other signals transmitted on nearby frequencies, which can degrade the quality of the transmitted signals.Difficulty in Assigning Frequencies: FDM requires careful assignment of frequencies to different signals to avoid interference, which can be a complex and time-consuming process. Advantages of Time Division Multiplexing (TDM): High Capacity: TDM can support a large number of signals over a single communication channel, making it ideal for applications where many signals need to be transmitted.Simple Implementation: TDM is a relatively simple technique that is easy to implement, making it a cost-effective solution for many applications.Precise Time Synchronization: TDM requires precise time synchronization between the transmitting and receiving devices, which can help ensure accurate transmission of signals. Disadvantages of Time Division Multiplexing (TDM): Inefficient Use of Bandwidth: TDM may not make optimal use of available bandwidth, as time slots may be left unused if there are no signals to transmit during a particular time slot.High Implementation Cost: TDM requires sophisticated hardware or software to ensure precise time synchronization between the transmitting and receiving devices, making it more expensive to implement than FDM.Vulnerable to Timing Jitter: TDM can be vulnerable to timing jitter, which can occur when the timing of the transmitting and receiving devices drifts out of sync, leading to errors in the transmission of signals. Comment More infoAdvertise with us Next Article Types of Transmission Media S Sakshi98 Follow Improve Article Tags : Misc Computer Networks Practice Tags : Misc Similar Reads Data Communication Tutorial Data communication plays an important role in today's interconnected world and enables the exchange of information between devices and networks. Whether you're sending an email, making a video call, or browsing the web, data communication ensures that information flows smoothly. This Data Communicat 5 min read Basics of Data CommunicationData Communication - Definition, Components, Types, ChannelsTransferring data over a transmission medium between two or more devices, systems, or places is known as data communication. Nowadays, computing and telecommunications depend heavily on this data transmission, which makes a variety of applications conceivable, including email, video chatting, the In 7 min read Types of Computer NetworksA computer network is a system that connects many independent computers to share information (data) and resources. The integration of computers and other different devices allows users to communicate more easily. It is a collection of two or more computer systems that are linked together. A network 11 min read Transmission Modes in Computer Networks (Simplex, Half-Duplex and Full-Duplex)Transmission modes also known as communication modes, are methods of transferring data between devices on buses and networks designed to facilitate communication. They are classified into three types: Simplex Mode, Half-Duplex Mode, and Full-Duplex Mode. In this article, we will discuss Transmission 6 min read Difference Between Serial and Parallel TransmissionData transmission is how computers and other devices send information to each other. There are two main ways to do this Serial and Parallel Transmission. In Serial Transmission, data is sent one bit at a time like sending a single line of people through a door. In Parallel Transmission data is sent 4 min read How Data Encapsulation and De-encapsulation Works?Data encapsulation and de-encapsulation are fundamental concepts in computer networking and communication protocols. These processes are essential for transferring data across networks efficiently and securely. What is Data Encapsulation?Encapsulation is the process of adding additional information 4 min read OSI ModelNetwork Layer ServicesThe network layer is a part of the communication process in computer networks. Its main job is to move data packets between different networks. It helps route these packets from the sender to the receiver across multiple paths and networks. Network-to-network connections enable the Internet to funct 6 min read Transport Layer responsibilitiesThe transport Layer is the second layer in the TCP/IP model and the fourth layer in the OSI model. It is an end-to-end layer used to deliver messages to a host. It is termed an end-to-end layer because it provides a point-to-point connection rather than hop-to-hop, between the source host and destin 5 min read TCP/IP Model The TCP/IP model (Transmission Control Protocol/Internet Protocol) is a four-layer networking framework that enables reliable communication between devices over interconnected networks. It provides a standardized set of protocols for transmitting data across interconnected networks, ensuring efficie 7 min read Data and SignalsFrequency Domain Filters and its TypesFrequency Domain Filters are used for smoothing and sharpening of image by removal of high or low frequency components. Sometimes it is possible of removal of very high and very low frequency. Frequency domain filters are different from spatial domain filters as it basically focuses on the frequency 2 min read Difference Between Bit Rate and Baud RateBoth Bit rate and Baud rate are generally used in data communication to measure the speed of data. Bit rate refers to the number of bits transmitted per second in a communication system, while baud rate refers to the number of signal units or symbols transmitted per second. In some cases, multiple b 3 min read Transmission of SignalsTransmission Impairment in Data CommunicationIn communication system, analog signals travel through transmission media, which tends to deteriorate the quality of analog signal, which means that the signal at the beginning of the medium is not the same as the signal at the end of the medium. The imperfection causes signal impairment. Below are 3 min read What is Bandwidth? Definition, Working, Importance, UsesPre-Requisite: Introduction to Bandwidth Network bandwidth is the maximum capacity of a wired or wireless communications link to deliver data via a network connection in a given amount of time. Bandwidth is typically defined as the number of bits, kilobits, megabits, or gigabits that may be sent in 8 min read Digital To Digital Conversion in Computer NetworkIn this article we will be discussing about digital-to-digital transmission in computer network i.e., how a digital data or information is converted into digital signal. The digital-to-digital encoding can be done by a technique called line coding. Line CodingThe process of converting the digital da 5 min read Line CodingThe process of converting binary data into a sequence of bits of the digital signal is known as Line coding. It is also known as digital PAM formats. Need of Line coding: We always come across different types of data such as text, numbers, graphical images, audio, and video. These all data are store 2 min read Analog to Digital ConversionDigital Signal: A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on one of a finite number of values. Analog Signal: An analog signal is any continuous signal for which the time varying feature of the signal is a representation of 6 min read Digital to Analog ConversionDigital Signal - A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on one of a finite number of values. Analog Signal - An analog signal is any continuous signal for which the time varying feature of the signal is a representation 3 min read Quadrature Amplitude ModulationQuadrature Amplitude Modulation (QAM) is a modulation technique that can be utilized in Analog modulation concepts and digital modulation concepts. It is a combination of ASK and PSK. So, in this article, we will discuss QAM, Analog QAM, Digital QAM, and many more. Quadrature Amplitude Modulation:Qu 5 min read Analog to Analog Conversion (Modulation)Analog Signal: An analog signal is any continuous signal for which the time varying feature of the signal is a representation of some other time varying quantity i.e., analogous to another time varying Signal. Analog to Analog Conversion - Analog-to-analog conversion, or modulation, is the represent 3 min read What is Modulation?Modulation can be digital or analog, the input wave of the analog signal varies continuously like a sine wave. Modulation can be defined as the process of converting data into waves by adding information to a carrier signal. Such a signal can be transmitted electronically or optically, but it must h 6 min read MultiplexingMultiplexing (Channel Sharing) in Computer NetworkMultiplexing means multiple sources but one link. An alternative approach is a Direct point-to-point connection, but it has several problems as it requires an I/O port for each device, a need line for each device, and also a large amount of wiring needed if on different floors. Instead, if we use a 9 min read Types of Multiplexing in Data CommunicationsImagine you have several friends who all want to send letters to the same person at the same time. Instead of sending each letter individually, which would take a lot of time and effort, you put all the letters into one big envelope and send that. When the big envelope arrives, the letters are taken 6 min read Frequency Division and Time division multiplexingMultiplexing is used in cases where the signals of lower bandwidth and the transmitting media is having higher bandwidth. In this case, the possibility of sending a number of signals is more. In this, the signals are combined into one and are sent over a link that has greater bandwidth of media than 4 min read Transmission MediaTypes of Transmission MediaTransmission media is the physical medium through which data is transmitted from one device to another within a network. These media can be wired or wireless. The choice of medium depends on factors like distance, speed, and interference. In this article, we will discuss the transmission media. In t 9 min read Twisted-pair CableTwisted-pair Cable is a transmission media. Transmission media refers to the physical path or medium used to transmit data between devices. It can be divided into two parts: Guided Media and Unguided Media. In guided media, the signal is contained within the physical limits of the transmission mediu 4 min read What is Coaxial Cable ?Coaxial cable is typically used by cable operators, telephone companies, and internet providers to transmit data, video, and voice communications to customers. Its installation and implementation are easy but it is less efficient than optical fiber also it provides moderately low bandwidth in compar 6 min read Fiber Optics and TypesFiber Optics or Optical Fiber is a technology that transmits data as a light pulse along a glass or plastic fiber. An Optical Fiber is a cylindrical fiber of glass that is hair-thin in size or any transparent dielectric medium. The fiber which is used for optical communication is waveguides made of 6 min read Difference between Twisted pair cable, Co-axial cable and Optical fiber cableA computer cable is a medium used to transmit data between devices such as computers, servers, routers, and switches. Cables physically connect these devices, enabling them to communicate within a network. In computer networking, it is very important to know the distinctions between the different ty 8 min read Radio WavesRadio waves are a special type of energy that travels through space, carrying information without needing wires. They have the longest wavelengths in the electromagnetic spectrum, meaning they stretch out much farther than other waves like visible light or X-rays. These waves can be incredibly long, 9 min read Infrared light for TransmissionInfrared light for Transmission :Infrared is the frequency of light that is not visible to the eyes .The frequency of the waves lies between three hundred gigacycles to four hundred THz. In this, the radiation is in the region of the electromagnetic spectrum . Infrared could be a communication mediu 3 min read Difference between Guided and Unguided MediaNetwork media or transmission media refer to the physical pathways through which data is transmitted from one device to another within a network. These ways can be wired or wireless. The selection of media depends on factors like distance, speed, and interference. In this article, we will discuss th 4 min read Error Detection and CorrectionError Detection in Computer NetworksError is a condition when the receiver's information does not match the sender's. Digital signals suffer from noise during transmission that can introduce errors in the binary bits traveling from sender to receiver. That means a 0 bit may change to 1 or a 1 bit may change to 0. Data (Implemented eit 7 min read Forward Error Correction in Computer NetworksForward Error Correction (FEC) is a technique used to minimize errors in data transmission over communication channels. In real-time multimedia transmission, re-transmission of corrupted and lost packets is not useful because it creates an unacceptable delay in reproducing : one needs to wait until 3 min read Vertical Redundancy Check (VRC) or Parity CheckVertical Redundancy Check is also known as Parity Check. In this method, a redundant bit also called parity bit is added to each data unit. This method includes even parity and odd parity. Even parity means the total number of 1s in data is to be even and odd parity means the total number of 1s in d 3 min read Longitudinal Redundancy Check (LRC)/2-D Parity CheckLongitudinal Redundancy Check (LRC) is also known as 2-D parity check. In this method, data which the user want to send is organised into tables of rows and columns. A block of bit is divided into table or matrix of rows and columns. In order to detect an error, a redundant bit is added to the whole 2 min read Hamming Code in Computer NetworkHamming code is an error-correcting code used to ensure data accuracy during transmission or storage. Hamming code detects and corrects the errors that can occur when the data is moved or stored from the sender to the receiver. This simple and effective method helps improve the reliability of commun 10 min read Concepts of hamming distanceHamming Distance Problem: In general, it is assumed that it is more likely to have fewer errors than more errors. This âworst-caseâ approach to coding is intuitively appealing within itself. Nevertheless, it is closely connected to a simple probabilistic model where errors are introduced into the me 2 min read Error Detection Code - ChecksumChecksum is the error detection method used by upper-layer protocols and is considered to be more reliable than Longitudinal Redundancy Check (LRC), Vertical Redundancy Check (VRC), and Cyclic Redundancy Check (CRC). This method uses a Checksum Generator on the sender side and a Checksum Checker on 4 min read ChannelizationFrequency Division Multiple Access (FDMA) TechniquesIn Frequency-Division Multiple Access the channel bandwidth is subdivided into a variety of sub-channels. FDMA is used for voice and data transmission. During this method the general channel bandwidth is shared by multiple users, therefore a variety of users can transmit their data simultaneously. N 5 min read CDMA Full FormCDMA stands for Code Division Multiple Access. It is basically a channel access method and is also an example of multiple access. Multiple access basically means that information by several transmitters can be sent simultaneously onto a single communication channel. There are multiple users which ar 4 min read What is Ethernet?A LAN is a data communication network connecting various terminals or computers within a building or limited geographical area. The connection between the devices could be wired or wireless. Although Ethernet has been largely replaced by wireless networks, wired networking still uses Ethernet more f 9 min read Bridges (local Internetworking device)Prerequisites - Network Devices, Types of switches Bridge is a local internetworking device that is used to connect two or more network segments together. A bridge operates at the Data Link Layer (Layer 2) of the OSI model and uses the MAC addresses of devices to make forwarding decisions. Bridges w 6 min read Introduction of Gigabit EthernetThe committee began working on a faster Ethernet, quickly dubbed gigabit Ethernet. The goal was to increase performance while maintaining all Ethernet standards. Gigabit Ethernet had to provide service with both unicast and broadcast using the same 48-bit address scheme and also maintaining the same 3 min read Like