Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Number System and Arithmetic
  • Algebra
  • Set Theory
  • Probability
  • Statistics
  • Geometry
  • Calculus
  • Logarithms
  • Mensuration
  • Matrices
  • Trigonometry
  • Mathematics
Open In App
Next Article:
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.5
Next article icon

Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.5

Last Updated : 22 May, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

In the article, we will solve Exercise 9.5 from Chapter 9, “Differential Equations” in the NCERT. Exercise 9.5 covers Homogeneous differential equations.

Basic Concept to Solve Exercise 9.5

STEP 1: First of all, prove that the given differential equation is a Homogeneous differential equation.

STEP 2: Then put y = vx in the differential equation.

STEP 3: Then solve by using the variable separation method.

Exercise 9.5 Solution

In each of the Exercises 1 to 10, show that the given differential equation is homogeneous and solve each of them.

Q.1: (x^2+xy)dy = (x^2+y^2)dx

Solution:

We have (x^2+xy)dy = (x^2+y^2)dx This equation can be written as -

\frac{dy}{dx} = \frac{(x^2+y^2)}{(x^2+xy)}

Let F(x,y) = \frac{(x^2+y^2)}{(x^2+xy)}

F(\lambda x,\lambda y) = \frac{(\lambda x)^2+(\lambda y)^2}{(\lambda x)^2+(\lambda x)(\lambda y)} = \frac{ x^2+ y^2}{ x^2+ xy} = \lambda ^oF( x, y)

Thus, Equation is a homogeneous equation.

Let y = vx

Differentiating both sides with respect to x we get:

\frac{dy}{dx} = v +x\frac{dv}{dx}

v +x\frac{dv}{dx} = \frac{x^2+(vx)^2}{x^2+x(vx)}

v +x\frac{dv}{dx} = \frac{1+v^2}{1+v}

x\frac{dv}{dx} = \frac{1+v^2}{1+v}-v= \frac{(1+v^2)-v(1+v)}{1+v}

(\frac{1+v}{1-v})dv= \frac{dx}{x}

(\frac{2-1+v}{1-v})dv= \frac{dx}{x}

(\frac{2}{1-v}-1)dv= \frac{dx}{x}

Integrating both sides:

-2log(1-v)- v = logx - logc

v = -2log(1-v)-logx +logc

v = log[\frac{c}{x(1-v)^2}]

\frac{y}{x} = log[\frac{c}{x(1-\frac{y}{x})^2}]

\frac{y}{x} = log[\frac{cx}{(x-y)^2}]

[\frac{cx}{(x-y)^2}]= e^\frac{y}{x}

Hence the required solution is (x-y)^2 = cxe^\frac{-y}{x}

Q.2: y^{'} = \frac{x+y}{x}

Solution:

y^{'} = \frac{x+y}{x} can be written as

\frac{dy}{dx} = \frac{x+y}{x}

Let F(x,y) = \frac{x+y}{x}

F( \lambda x,\lambda y) = \frac{ \lambda x+\lambda y}{ \lambda x} = \frac{x+y}{x} = \lambda ^oF(x,y)

Thus, Equation is a homogeneous equation.

Let y = vx

Differentiating both sides we get:

\frac{dy}{dx} = v +x\frac{dv}{dx}

v +x\frac{dv}{dx} = \frac{x+vx}{x}

v +x\frac{dv}{dx} = 1+v

x\frac{dv}{dx} = 1

dv = \frac{dx}{x}

On Integrating:

\int dv = \int \frac{dx}{x}

v= log|x|+c

\frac{y}{x}= log|x|+c

Hence the required solution is y= xlog|x|+cx

Q.3: (x-y)dy - (x+y)dx = 0

Solution:

(x-y)dy - (x+y)dx = 0 can be written as

\frac{dy}{dx} = \frac{x+y}{x-y}

F(x,y) =\frac{x+y}{x-y}

F( \lambda x, \lambda y ) = \frac{\lambda x+\lambda y}{\lambda x-\lambda y} = \frac{x+y}{x-y} = \lambda ^oF(x,y)

Thus, Equation is a homogeneous equation.

Let y = vx

On Differentiating:

\frac{dy}{dx} = v +x\frac{dv}{dx}

From above, we have

\frac{dy}{dx} = \frac{x+y}{x-y} \ and \ y=vx , Substituting these values:

v +x\frac{dv}{dx} = \frac{x+vx}{x-vx} = \frac{1+v}{1-v}

x\frac{dv}{dx} = \frac{1+v}{1-v}-v = \frac{1+v-v(1-v)}{1-v}

x\frac{dv}{dx} = \frac{1+v^2}{1-v}

( \frac{1-v}{1+v^2})dv = \frac{dx}{x}

( \frac{1}{1+v^2}- \frac{v}{1+v^2})dv = \frac{dx}{x}

\tan^{-1}v -\frac{1}{2}\log(1+v^2) = \log x +c

\tan^{-1}(\frac{y}{x}) -\frac{1}{2}\log[1+(\frac{y}{x})^2] = \log x +c

\tan^{-1}(\frac{y}{x}) -\frac{1}{2}\log[\frac{x^2+y^2}{x^2}] = \log x +c

\tan^{-1}(\frac{y}{x}) -\frac{1}{2}[\log({x^2+y^2})-\log{x^2}] = \log x +c

So, \tan^{-1}(\frac{y}{x}) =\frac{1}{2}\log({x^2+y^2}) +c

Q.4: (x^2-y^2)dx+2xydy=0

Solution:

(x^2-y^2)dx+2xydy=0 can be written as

\frac{dy}{dx} = \frac{-(x^2-y^2)}{2xy}

Let F(x,y) = \frac{-(x^2-y^2)}{2xy}

F(\lambda x,\lambda y) = - [\frac{ (\lambda x)^2- (\lambda y)^2}{2 (\lambda x )(\lambda y)}] = -\frac{(x^2-y^2)}{2xy} = \lambda ^oF(x,y)

Thus, differential equation is a homogeneous equation.

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v +x\frac{dv}{dx} = -[\frac{x^2-(vx)^2}{2x(vx)}]

v +x\frac{dv}{dx} = \frac{v^2-1}{2v}

x\frac{dv}{dx} = \frac{v^2-1}{2v}-v = \frac{v^2-1- 2v^2}{2v}

x\frac{dv}{dx} = \frac{-(1+v^2)}{2v}

\frac{2v}{1+v^2} =-\frac{dx}{x}

\log(1+v^2)=-\log x+\log c = \log(\frac{c}{x})

1+v^2 =\frac{c}{x}

1+(\frac{y}{x})^2 =\frac{c}{x}

x^2+y^2 = cx

Q.5: x^2\frac{dy}{dx} = x^2-2y^2+xy

Solution:

x^2\frac{dy}{dx} = x^2-2y^2+xy can be written as

\frac{dy}{dx} = \frac{x^2-2y^2+xy}{x^2}

F(x,y) = \frac{x^2-2y^2+xy}{x^2}

F( \lambda x, \lambda y) = \frac{(\lambda x)^2-2 (\lambda y)^2+ (\lambda x)( \lambda y)}{ (\lambda x)^2} = \frac{x^2-2y^2+xy}{x^2}= \lambda ^oF(x,y)

Thus, given differential equation is a homogeneous equation.

y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v +x\frac{dv}{dx} = \frac{x^2-2(vx)^2+x(vx)}{x^2}

v +x\frac{dv}{dx} = 1-2v^2+v

x\frac{dv}{dx} = 1-2v^2

\frac{dv}{ 1-2v^2} =\frac{dx}{x}

\frac{dv}{ 2(\frac{1}{2}-v^2)} =\frac{dx}{x}

\frac{1}{2}[\frac{dv}{ (\frac{1}{\sqrt2})^2-v^2}] =\frac{dx}{x}

\frac{1}{2}\frac{1}{2\times\frac{1}{\sqrt2}}\log|\frac{\frac{1}{\sqrt2}+v}{\frac{1}{\sqrt2}-v}| = \log|x|+c

\frac{1}{2\sqrt2}\log|\frac{\frac{1}{\sqrt2}+\frac{y}{x}}{\frac{1}{\sqrt2}-\frac{y}{x}}| = \log|x|+c

\frac{1}{2\sqrt2}\log|\frac{x+\sqrt2y}{{x-\sqrt2y}}| = \log|x|+c

Q.6: xdy-ydx = \sqrt{x^2+y^2}dx

Solution:

xdy-ydx = \sqrt{x^2+y^2}dx cab be written as

\frac{dy}{dx} = \frac{y+\sqrt{x^2+y^2}}{x}

Let F(x,y) = \frac{y+\sqrt{x^2+y^2}}{x}

F(\lambda x,\lambda y) = \frac{(\lambda y)+\sqrt{(\lambda x)^2+(\lambda y)^2}}{\lambda x} = \frac{y+\sqrt{x^2+y^2}}{x} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v+x\frac{dy}{dx} = \frac{vx+\sqrt{x^2+(vx)^2}}{x}

v+x\frac{dy}{dx} = v+\sqrt{1+v^2}

x\frac{dy}{dx} =\sqrt{1+v^2}

\frac{dv}{\sqrt{1+v^2}} = \frac{dx}{x}

\log|v+\sqrt{1+v^2}| = \log|x|+\log c

\log|\frac{y}{x}+\sqrt{1+(\frac{y}{x})^2}| = \log|cx|

\log|\frac{y+\sqrt{x^2+y^2}}{x}|= \log|cx|

{y+\sqrt{x^2+y^2}}= cx^2

Q.7: \{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}ydx = \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}xdy

Solution:

\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}ydx = \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}xdy can be written as

\frac{dy}{dx} = \frac{\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}y}{ \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}x}

F(x,y)= \frac{\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}y}{ \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}x}

F(\lambda x,\lambda y)= \frac{\{{\lambda x\cos (\frac{\lambda y}{\lambda x})+ \lambda y \sin(\frac{\lambda y}{\lambda x})}\}\lambda y}{ \{{\lambda y\sin (\frac{\lambda y}{\lambda x})-\lambda x \cos(\frac{\lambda y}{\lambda x})}\}\lambda x} = \frac{\{{x\cos (\frac{y}{x})+ y \sin(\frac{y}{x})}\}y}{ \{{y\sin (\frac{y}{x})-x \cos(\frac{y}{x})}\}x} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v+x\frac{dv}{dx}=\frac{\{{x\cos v+ vx \sin v}\}vx}{ \{{vx\sin v-x \cos v}\}x}

v+x\frac{dv}{dx}=\frac{{v\cos v+ v^2 \sin v}}{ {v\sin v- \cos v}}

x\frac{dv}{dx}=\frac{{v\cos v+ v^2 \sin v}}{ {v\sin v- \cos v}}-v

x\frac{dv}{dx}=\frac{{v\cos v+ v^2 \sin v -{v^2\sin v+ v\cos v}}}{ {v\sin v- \cos v}}

x\frac{dv}{dx}=\frac{2v\cos v}{ {v\sin v- \cos v}}

[\frac{ {v\sin v- \cos v}}{v\cos v}]dv = \frac{2dx}{x}

[ \tan v-\frac{1}{v} ]dv = \frac{2dx}{x}

\log (\sec v) - \log v = 2\log x+\log c

\log (\frac{\sec v}{v}) =\log(cx^2)

(\frac{\sec v}{v}) =cx^2

{\sec v} =cx^2v

{\sec (\frac{y}{x})} =cx^2(\frac{y}{x})

{\sec (\frac{y}{x})} =cxy

\cos(\frac{y}{x}) = \frac{1}{cxy}

xy\cos(\frac{y}{x}) = k , where \space k = \frac{1}{c}

Q.8: x\frac{dy}{dx}-y +x\sin(\frac{y}{x})=0

Solution:

x\frac{dy}{dx}-y +x\sin(\frac{y}{x})=0 can be written as

\frac{dy}{dx} = \frac{y -x\sin(\frac{y}{x})}{x}

F(x,y)= \frac{y -x\sin(\frac{y}{x})}{x}

F(\lambda x,\lambda y)= \frac{\lambda y -\lambda x\sin(\frac{\lambda y}{\lambda x})}{\lambda x}= \frac{y -x\sin(\frac{y}{x})}{x} =\lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v +x\frac{dv}{dx} = \frac{vx - x\sin v}{x}

v +x\frac{dv}{dx} = v - \sin v

x\frac{dv}{dx} = - \sin v

\cosec vdv =-\frac{dx}{x}

\log|\cosec v-\cot v| = -\log x+ \log c = \log\frac{c}{x}

\cosec \frac{y}{x}-\cot \frac{y}{x} = \frac{c}{x}

\frac{1}{\sin (\frac{y}{x})}-\frac{\cos (\frac{y}{x})}{\sin ( \frac{y}{x})} = \frac{c}{x}

x[1-\cos (\frac{y}{x})] = c\sin (\frac{y}{x})

Q.9: ydx+x\log(\frac{y}{x})dy-2xdy = 0

Solution:

ydx+x\log(\frac{y}{x})dy-2xdy = 0 can be written as

\frac{dy}{dx} = \frac{y}{2x-x\log(\frac{y}{x})}

Let F(x,y) = \frac{y}{2x-x\log(\frac{y}{x})}

F(\lambda x,\lambda y) = \frac{\lambda y}{2(\lambda x)-(\lambda x)\log(\frac{\lambda y}{\lambda x})} = \frac{y}{2x-x\log(\frac{y}{x})} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v+x\frac{dv}{dx} = \frac{vx}{2x-x\log(\frac{vx}{x})}

v+x\frac{dv}{dx} = \frac{v}{2-\log v}

x\frac{dv}{dx} = \frac{v}{2-\log v}-v

x\frac{dv}{dx} = \frac{v-2v+v\log v}{2-\log v}

x\frac{dv}{dx} = \frac{v\log v- v}{2-\log v}

\frac{2-\log v}{v(\log v- 1)}dv = \frac{dx}{x}

[ \frac{1+(1-\log v)}{v(\log v- 1)}]dv = \frac{dx}{x}

[ \frac{1}{v(\log v- 1)}- \frac{1}{v}]dv = \frac{dx}{x}

\int \frac{1}{v(\log v- 1)}-\int \frac{1}{v}dv = \int\frac{dx}{x}

\int \frac{1}{v(\log v- 1)}-\log v= \log x+\log c

Let (\log v -1) = t

\frac{d}{dv}(\log v - 1) = \frac{dt}{dv}

\frac{1}{v} = \frac{dt}{dv}

\frac{dv}{v} = dt

So, \int \frac{dt}{t}-\log v= \log x+\log c

\log t-\log v= \log x+\log c

\log [\log (\frac{y}{x})-1]-\log (\frac{y}{x}) = \log (cx)

\log [\frac{\log (\frac{y}{x})-1}{\frac{y}{x}}]-\log (\frac{y}{x}) = \log (cx)

\frac{x}{y} [{\log (\frac{y}{x})-1}] = cx

{\log (\frac{y}{x})-1} = cy

Q.10: (1+e^\frac{x}{y})dx+e^\frac{x}{y}(1-\frac{x}{y})dy = 0

Solution:

(1+e^\frac{x}{y})dx+e^\frac{x}{y}(1-\frac{x}{y})dy = 0 can be written as

\frac{dy}{dx} = \frac{-e^\frac{x}{y}(1-\frac{x}{y})}{(1+e^\frac{x}{y})}

F(x,y) = \frac{-e^\frac{x}{y}(1-\frac{x}{y})}{(1+e^\frac{x}{y})}

F(\lambda x,\lambda y) = \frac{-e^\frac{\lambda x}{\lambda y}(1-\frac{\lambda x}{\lambda y})}{(1+e^\frac{\lambda x}{\lambda y})} = \frac{-e^\frac{x}{y}(1-\frac{x}{y})}{(1+e^\frac{x}{y})} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let x = vy

\frac{dx}{dy} = v +y\frac{dv}{dy}

v+y\frac{dv}{dy} = \frac{-e^v(1-v)}{(1+e^v)}

y\frac{dv}{dy} = \frac{-e^v+ve^v}{(1+e^v)}-v

y\frac{dv}{dy} = \frac{-e^v+ve^v-v-ve^v}{1+e^v}

y\frac{dv}{dy} = -[\frac{v+e^v}{1+e^v}]

[\frac{v+e^v}{1+e^v}]dv = -\frac{dy}{y}

\log(v+e^v) = \log( \frac{c}{y})

(\frac{x}{y}+e^\frac{x}{y}) = \frac{c}{y}

x+ye^\frac{x}{y} = c

For each of the differential equations in Exercises from 11 to 15, find the particular solution satisfying the given condition.

Q.11: (x+y)dy+(x-y)dx = 0 ; y = 1 when x=1

Solution:

(x+y)dy+(x-y)dx = 0 ; can be written as

\frac{dy}{dx}=\frac{-(x-y)}{x+y}

F(x,y) =\frac{-(x-y)}{x+y}

F(\lambda x,\lambda y) =\frac{-(\lambda x-\lambda y)}{\lambda x+\lambda y} = \frac{-(x-y)}{x+y} = \lambda ^o F(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v +x\frac{dv}{dx} = \frac{-(x-vx)}{x+vx}

v +x\frac{dv}{dx} = \frac{v-1}{v+1}

x\frac{dv}{dx} = \frac{v-1}{v+1}-v = \frac{v-1-v(v+1)}{v+1}

x\frac{dv}{dx}= \frac{v-1-v^2-v}{v+1} = \frac{-(1+v^2)}{v+1}

\frac{v+1}{1+v^2}dv = -\frac{dx}{x}

[ \frac{v}{1+v^2}+\frac{1}{1+v^2}]dv = -\frac{dx}{x}

\frac{1}{2}\log(1+v^2)+\tan^{-1}v = -\log x +k

\log(1+v^2)+2\tan^{-1}v = -2\log x +2k

\log[(1+v^2)x^2]+2\tan^{-1}v = 2k

\log[(1+(\frac{y}{x})^2)x^2]+2\tan^{-1}v = 2k

\log(x^2+y^2)+2\tan^{-1}\frac{y}{x} = 2k

Now, put y = 1\space and \space x = 1

\log(2)+2\tan^{-1}1 = 2k

\log 2 + 2\times\frac{\pi}{4} = 2k

we get, \log(x^2+y^2)+2\tan^{-1}\frac{y}{x} = \frac{\pi}{2}+\log2

Q.12: x^2dy+(xy+y^2)dx = 0 ; y = 1 when x= 1

Solution:

x^2dy+(xy+y^2)dx = 0 ; can be written as

\frac{dy}{dx} = \frac{-(xy+y^2)}{x^2}

F(x,y) = \frac{-(xy+y^2)}{x^2}

F(\lambda x,\lambda y) = \frac{-(\lambda x.\lambda y+(\lambda y)^2)}{(\lambda x)^2} = \frac{-(xy+y^2)}{x^2} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v+x \frac{dy}{dx} = \frac{-[x.vx+(vx)^2]}{x^2} = -v-v^2

x \frac{dy}{dx} = -v^2-2v = -v(v+2)

\frac{dv} {v(v+2)} = - \frac{dx}{x}

\frac{1}{2}[\frac{2} {v(v+2)}]dv = - \frac{dx}{x}

\frac{1}{2}[\frac{(v+2)-v} {v(v+2)}]dv = - \frac{dx}{x}

\frac{1}{2}[\frac{1}{v} -\frac{1}{v+2}]dv = - \frac{dx}{x}

\frac{1}{2}[\log{v} -\log{(v+2)}] = - \log{x} +\log c

\frac{1}{2}\log(\frac{v}{v+2}) = \log \frac{c}{x}

\frac{v}{v+2} = (\frac{c}{x})^2

\frac{\frac{y}{x}}{\frac{y}{x}+2} = (\frac{c}{x})^2

\frac{y}{y+2x} = \frac{c^2}{x^2}

\frac{x^2y}{y+2x} = {c^2}

Now, put y = 1 and x = 1

\frac{1}{1+2} = {c^2}

{c^2} = \frac{1}{3}

\frac{x^2y}{y+2x} = \frac{1}{3}

{y+2x} = 3x^2y

Q.13: [x\sin^2(\frac{y}{x}-y)]dx+xdy = 0 ; y = \frac{\pi}{4} \space when \space x = 1

Solution:

[x\sin^2(\frac{y}{x}-y)]dx+xdy = 0 ; can be written as

\frac{dy}{dx} = \frac{-[x\sin^2(\frac{y}{x})-y]}{x}

F(x,y)= \frac{-[x\sin^2(\frac{y}{x})-y]}{x}

F(\lambda x,\lambda y)= \frac{-[\lambda x\sin^2(\frac{\lambda y}{\lambda x})-\lambda y]}{\lambda x} = \frac{-[x\sin^2(\frac{y}{x})-y]}{x} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y = vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v+x\frac{dv}{dx} = \frac{-[x\sin^2v-vx]}{x}

v+x\frac{dv}{dx} = {-[\sin^2v-v]} = v-\sin^2v

x\frac{dv}{dx} = -\sin^2v

\frac{dv}{\sin^2v } = -\frac{dx}{x}

\cosec^2v {dv} = -\frac{dx}{x}

-\cot v = -\log|x| -\log c

\cot v = \log|x| +\log c

\cot (\frac{y}{x}) = \log|x| +\log c

\cot (\frac{y}{x}) = \log|cx|

Now, put y = \frac{\pi}{4} \space at \space x = 1

\cot (\frac{\pi}{4}) = \log|c|

\log c = 1 \space; \space i.e \space c = e

\cot (\frac{y}{x}) = \log|ex|

Q.14: \frac{dy}{dx} - \frac{y}{x}+\cosec{(\frac{y}{x})} = 0 ; y = 0 \space when \space x= 1

Solution:

\frac{dy}{dx} - \frac{y}{x}+\cosec{(\frac{y}{x})} = 0 ; can be written as

\frac{dy}{dx} = \frac{y}{x}-\cosec{(\frac{y}{x})}

F(x,y) = \frac{y}{x}-\cosec{(\frac{y}{x})}

F(\lambda x,\lambda y) = \frac{\lambda y}{\lambda x}-\cosec{(\frac{\lambda y}{\lambda x})} = \frac{ y}{ x}-\cosec{(\frac{ y}{ x})} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y =vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v +x\frac{dv}{dx} = v-\cosec v

-\frac{dv}{\cosec v} = \frac{dx}{x}

-\sin vdv = \frac{dx}{x}

\cos v = \log x +\log c = \log|cx|

\cos (\frac{y}{x}) = \log|cx|

y = 0 \space at \space x= 1

\cos (0) = \log c

c = e^1 = e

\cos (\frac{y}{x}) = \log|ex|

Q.15: 2xy+y^2-2x^2\frac{dy}{dx} = 0 ; y = 2 \space when \space x =1

Solution:

2xy+y^2-2x^2\frac{dy}{dx} = 0 can be written as

\frac{dy}{dx} = \frac{2xy+y^2}{2x^2}

Let F(x,y) = \frac{2xy+y^2}{2x^2}

F(\lambda x,\lambda y) = \frac{2(\lambda x)(\lambda y)+(\lambda y)^2}{2(\lambda x)^2} = \frac{2xy+y^2}{2x^2} = \lambda ^oF(x,y)

Thus, Given differential equation is a homogeneous equation.

Let y =vx

\frac{dy}{dx} = v +x\frac{dv}{dx}

v+x\frac{dy}{dx} = \frac{2x(vx)+(vx)^2}{2x^2}

v+x\frac{dy}{dx} = \frac{2v+v^2}{2}

v+x\frac{dy}{dx} = v+\frac{v^2}{2}

\frac{2}{v^2}dv = \frac{dx}{x}

2. \frac{v^{-2+1}}{-2+1} = \log|x|+c

-\frac{2}{v} = \log|x|+c

-\frac{2}{(\frac{y}{x})} = \log|x|+c

-\frac{2x}{y} = \log|x|+c

y = 1 \space at \space x= 1

-1 = \log(1)+c

c = -1

-\frac{2x}{y} = \log|x|-1

\frac{2x}{y} = 1-\log|x|

y = \frac{2x}{1-\log|x| } , \space (x \neq 0 , x\neq e)

Q.16: A homogeneous differential equation of the form \frac{dx}{dy} = h(\frac{x}{y}) can be solved by making the substitution.

(A) y =vx

(B) v = yx

(C) x = vy

(D) x = v

Solution:

For solving homogeneous equation of form \frac{dx}{dy} = h(\frac{x}{y}) , we need to make substitution as x = vy

.Thus, the correct option is C.

Q.17: Which of the following is a homogeneous differential equation?

(A) (4x+6y+5)dy-(3y+2x+4)dx = 0

(B) (xy)dx-(x^3+y^3)dy =0

(C) (x^3+2y^2)dx+2xydy = 0

(D) y^2dx+(x^2-xy^2-y^2)dy = 0

Solution:

F(x,y) is homogeneous function of degree n , if F(\lambda x,\lambda y ) = \lambda^{'} F(x,y) for non-zero constant \lambda

.Consider equation given in D

y^2dx+(x^2-xy^2-y^2)dy = 0 which can be written as

\frac{dy}{dx} = \frac{-y^2}{x^2-xy^2-y^2} = \frac{y^2}{xy^2+y^2-x^2}

F(x,y)= \frac{y^2}{xy^2+y^2-x^2}

F(\lambda x,\lambda y)= \frac{(\lambda y)^2}{(\lambda x)(\lambda y)^2+(\lambda y)^2-(\lambda x)^2} = \frac{y^2}{xy^2+y^2-x^2} = F(x, y )

Thus, Differential equation given in D is a homogeneous equation.

Also Check,

  • Chapter 9 Differential Equations-Exercise -9.1
  • Chapter 9 Differential Equations-Exercise -9.2
  • Chapter 9 Differential Equations-Exercise -9.3

Next Article
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.5

R

rkranjan04
Improve
Article Tags :
  • Mathematics
  • School Learning
  • NCERT
  • Class 12
  • NCERT Solutions Class-12
  • Maths-Class-12

Similar Reads

    Class 12 NCERT Solutions- Mathematics Part II - Chapter 9 Differential Equations-Exercise -9.2
    In each of the Questions 1 to 6 verify that the given functions (explicit) is a solution of the corresponding differential equation:Question 1. y = ex + 1 : y'' - y' = 0 Solution: Given: y = ex + 1 On differentiating we get y' = ex -(1) Again differentiating we get y'' = ex -(2) Now substitute the v
    4 min read
    Class 12 NCERT Solutions- Mathematics Part II - Chapter 9 Differential Equations-Exercise -9.3
    In each of the exercises 1 to 5, from a differential equation representing the given family of curves by eliminating arbitrary constraints a and b.Question 1.\frac{x}{a}+\frac{y}{b}=1Solution: Given: \frac{x}{a}+\frac{y}{b}=1 We can also write bx + ay = ab On differentiating we get b + ay' = 0 y' =
    5 min read
    Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.3
    Chapter 9 of the Class 12 NCERT Mathematics Part II textbook, titled "Differential Equations," covers the fundamental concepts and techniques for solving differential equations. This chapter introduces various methods for solving first-order and higher-order differential equations, which are crucial
    10 min read
    Class 12 NCERT Solutions- Mathematics Part ii – Chapter 9– Differential Equations Exercise 9.4
    NCERT solutions Class 12 Chapter 9 Exercise 9.4 consists of 16 questions that impart a clear understanding of Differential Equations. Learn about the concept used and the solution to Chapter 9– Integrals Exercise 9.4 in this article. Question 1. dy/dx = (x2 + y2) / (x2 + xy)Solution: Given equation:
    5 min read
    Class 12 NCERT Solutions- Mathematics Part II - Chapter 9 Differential Equations-Exercise -9.1
    Chapter 9 of the Class 12 NCERT Mathematics Part II textbook, titled "Differential Equations," introduces students to the concepts and techniques of solving differential equations. This chapter covers various methods for finding solutions to differential equations and understanding their application
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences