Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Number System and Arithmetic
  • Algebra
  • Set Theory
  • Probability
  • Statistics
  • Geometry
  • Calculus
  • Logarithms
  • Mensuration
  • Matrices
  • Trigonometry
  • Mathematics
Open In App
Next Article:
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 10 – Vector Algebra Miscellaneous Exercise on Chapter 10
Next article icon

Class 12 NCERT Solutions- Mathematics Part ii – Chapter 10 – Vector Algebra Miscellaneous Exercise on Chapter 10

Last Updated : 30 Jul, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

In the article, we will solve Miscellaneous Exercise from Chapter 10, “Vector Algebra” in the NCERT. This exercise covers the basics of vectors like scalar and vector components of vectors, section formulas, Multiplication of a Vector by a scalar, etc.

Question 1: Write down a unit vector in XY-plan, making an angle of 30 degree with the positive direction of x-axis

Answer

Let us take \vec{r} as a unit vector in the XY-plan, then \vec{r}=cos\theta\hat{i}+sin\theta {\hat{j}}

Also,\theta is the angle made by the unit vector with the positive direction of x-axis.

Therefore, for \theta=30\degree{}:

\vec{r}=cos30\degree{}\hat{i}+sin30\degree{} {\hat{j}}=\frac{\sqrt{3}}{2}\hat{i}+\frac{1}{2}\hat{j}

Hence, the required unit vector is\frac{\sqrt{3}}{2}\hat{i}+\frac{1}{2}\hat{j}

Question 2: Find the scalar components and magnitude of the vector joining the points

P(x_1,y_1,z_1)\, and \, Q(x_2,y_2,z_2)

Answer

The vector joining the points P(x_1,y_1,z_1)\, and \, Q(x_2,y_2,z_2) can be obtained by,

\vec{{PQ}} = Position vector of Q-Position vector of P

=(x_2-x_1)\hat{i}+(y_2-y_1)\hat{j}+(z_2-z_1)\hat{z}

\left|\vec{PQ}\right|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}

Hence, the scalar components and magnitude of the vector joining the points are:

\{(x_2-x_1),(y_2-y_1),(z_2-z_1)\}\,and\,\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}

Question 3: A girl walks 4 km towards west, then she walks 3 km in a direction 30\degree east of north and stops. Determine the girl's displacement from her initial point of departure.

Answer

Let O and B be the initial and final positions of the girl respectively.

Now, we have

\vec{OA}=-4\hat{i}\\ \vec{AB}=\hat{i}\left|\vec{AB}\right|cos60\degree+\hat{j}\left|\vec{AB}\right|sin60\degree\\=\hat{i}3\times\frac{1}{2}+\hat{j}3\times\frac{\sqrt{3}}{2}

=\frac{3}{2}\hat{i}+\frac{3\sqrt{3}}{2}\hat{j}

Also, by the triangle law of vector addition we have

\vec{OB}=\vec{OA}+\vec{AB}

=(-4\hat{i})+(\frac{3}{2}\hat{i}+\frac{3\sqrt{3}}{2}\hat{j})

=(-4+\frac{3}{2})\hat{i}+\frac{3\sqrt{3}}{2}\hat{j}

=(\frac{-8+3}{2})\hat{i}+\frac{3\sqrt{3}}{2}\hat{j}

=(\frac{-5}{2})\hat{i}+\frac{3\sqrt{3}}{2}\hat{j}

Hence, the girl's displacement from her initial point of departure is

=(\frac{-5}{2})\hat{i}+\frac{3\sqrt{3}}{2}\hat{j}

Question 4: if \vec{a}=\vec{b}+\vec{c}, then is it true that \left|\vec{a}\right|=\left|\vec{b}\right|+\left|\vec{c}\right|\,? Justify your answer

Answer:

In\, \triangle ABC,let\,\vec{CB}=\vec{a},\vec{CA}=\vec{b}\,and \,\vec{AB}=\vec{c}

By the triangle law of vector addition, we have \vec{a}=\vec{b}+\vec{c}

Also, we know \left|\vec{a}\right|,\left|\vec{b}\right|,\left|\vec{c}\right|\, represent the sides of \triangle ABC.

The sum of the lengths of any two sides of a triangle is greater than the third side.

\left|\vec{a}\right|< \left|\vec{b}\right|+\left|\vec{c}\right|\,

Hence, it is not true that \left|\vec{a}\right|=\left|\vec{b}\right|+\left|\vec{c}\right|\,.

Question 5: Find the value of x for which x(\hat{i}+\hat{j}+\hat{k}) is a unit vector.

Answer:

We know x(\hat{i}+\hat{j}+\hat{k}) is a unit vector if \left|x(\hat{i}+\hat{j}+\hat{k})\right|=1

Now,

\left|x(\hat{i}+\hat{j}+\hat{k})\right|=1

=\sqrt{x^2+x^2+x^2}=1\\=\sqrt{3x^2}=1\\=\sqrt{3}x=1\\=x= \pm {}_{}\frac{1}{\sqrt{3}}

Hence the required value of x is ±\frac{1}{\sqrt{3}}

Question 6: Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

\vec{a}=2\hat{i}+3\hat{j}-\hat{k}\,and \,\vec{b}=\hat{i}-2\hat{j}+\hat{k}

Answer:

We have,

\vec{a}=2\hat{i}+3\hat{j}-\hat{k}\,and \,\vec{b}=\hat{i}-2\hat{j}+\hat{k}

Let \vec{c} be the resultant of \vec{a}\,and \, \vec{b}

Now,

\vec{c}=\vec{a}+\vec{b}=(2+1)\hat{i}+(3-2)\hat{j}+(-1+1)\hat{k}=3\hat{i}+\hat{j}

\left|\vec{c}\right|=\sqrt{3^2+1^2}=\sqrt{9+1}=\sqrt{10}

\hat{c}=\frac{\vec{c}}{\left|\vec{c}\right|}=\frac{3\hat{i}+\hat{j}}{\sqrt{10}}

Hence, the vector of magnitude 5 units and parallel to the resultant of the given vectors \vec{a}\,and\,\vec{b} is

\pm{} 5\cdot\hat{c}=\pm 5\cdot \frac{1}{\sqrt{10}}(3\hat{i}+\hat{j})=\pm \frac{3\sqrt{10}\hat{i}}{2}\pm \frac{\sqrt{10}}{2}\hat{j}

Question 7: \vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=2\hat{i}-\hat{j}+3\hat{k}\,and\,\vec{c}=\hat{i}-2\hat{j}+\hat{k},\,find\, a\, unit\, vector\,parallel\,to\,thevector\,2\vec{a}-\vec{b}+3\vec{c}

Answer:

We have,

\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=2\hat{i}-\hat{j}+3\hat{k}\,and\,\vec{c}=\hat{i}-2\hat{j}+\hat{k}

2\vec{a}-\vec{b}+3\vec{c}=2(\hat{i}+\hat{j}+\hat{k})-(2\hat{i}-\hat{j}+3\hat{k})\,+3(\hat{i}-2\hat{j}+\hat{k})

=2\hat{i}+2\hat{j}+2\hat{k}-2\hat{i}+\hat{j}-3\hat{k}\,+3\hat{i}-6\hat{j}+3\hat{k}

=3\hat{i}-3\hat{j}+2\hat{k}

\left|2\vec{a}-\vec{b}+3\vec{c}\right|=\sqrt{3^2+(-3)^2+2^2}=\sqrt{9+9+4}=\sqrt{22}

Therefore, the unit vector along 2\vec{a}-\vec{b}+3\vec{c}\,\,is

\frac{2\vec{a}-\vec{b}+3\vec{c}}{\left |2\vec{a}-\vec{b}+3\vec{c}\right|}=\frac{3\hat{i}-3\hat{j}+2\hat{k}}{\sqrt{22}}

=\frac{3}{\sqrt{22}}\hat{i}-\frac{3}{\sqrt{22}}\hat{j}+\frac{2}{\sqrt{22}}\hat{k}

Question 8: Show that the points A (1, -2, -8), B (5, 0, -2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

Answer:

The given points are A (1, -2, -8), B (5, 0, -2), and C (11, 3, 7).

\vec{AB}=(5-1)\hat{i}+(0+2)\hat{j}+(-2+8)\hat{k}=4\hat{i}+2\hat{j}+6\hat{k}

\vec{BC}=(11-5)\hat{i}+(3-0)\hat{j}+(7+2)\hat{k}=6\hat{i}+3\hat{j}+9\hat{k}

\vec{AC}=(11-1)\hat{i}+(3+2)\hat{j}+(7+8)\hat{k}=10\hat{i}+5\hat{j}+15\hat{k}

\left|\vec{AB}\right|=\sqrt{4^2+2^2+6^2}=\sqrt{16+4+36}=\sqrt{56}=2\sqrt{14}

\left|\vec{BC}\right|=\sqrt{6^2+3^2+9^2}=\sqrt{36+9+81}=\sqrt{126}=3\sqrt{14}

\left|\vec{AC}\right|=\sqrt{{10}^2+5^2+{15}^2}=\sqrt{100+25+225}=\sqrt{350}=5\sqrt{14}

\left|\vec{AC}\right|=\left|\vec{AB}\right|+\left|\vec{BC}\right|

Hence, the given points A, B, and C are collinear.

Now, let point B divide AC in the ratio \lambda:1 then we have:

\vec{OB}=\frac{\lambda \vec{OC}+\vec{OA}}{(\lambda+1)}

=> 5\hat{i}-2\hat{k}=\frac{\lambda (11\hat{i}+3\hat{j}+7\hat{k})+(\hat{i}-2\hat{j}-8\hat{k})}{(\lambda+1)}

=> (\lambda+1)(5\hat{i}-2\hat{k})=11\lambda\hat{i}+3\lambda\hat{j}+7\lambda\hat{k}+\hat{i}-2\hat{j}-8\hat{k}

=>5(\lambda+1)\hat{i}-2(\lambda+1)\hat{k}=(11\lambda+1)\hat{i}+(3\lambda-2)\hat{j}+(7\lambda-8)\hat{k}

On equating the corresponding components, we get:

5(\lambda+1)=11\lambda+1

=> 5\lambda+5=11\lambda+1\\=>6\lambda=4

=>\lambda=\frac{4}{6}=\frac{2}{3}

Hence, point B divides AC in the ratio 2:3

Question 9 Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are (2\vec{a}+\vec{b})and(\vec{a}-3\vec{b}) externally in the ratio 1: 2. Also, show that P is the mid-point of the line segment RQ.

Answer:

Given \vec{OP}=2\vec{a}+\vec{b},\vec{OQ}=\vec{a}-3\vec{b}.

Also, point R divides a line segment joining two points P and Q externally in. the ratio 1: 2. By the section formula, we get:

\vec{OR}=\frac{2(2\vec{a}+\vec{b})-(\vec{a}-3\vec{b})}{2-1}=\frac{4\vec{a}+2\vec{b}-\vec{a}+3\vec{b}}{1}=3\vec{a}+5\vec{b}

Hence, the positive vector of point R is 3\vec{a}+5\vec{b}.

Positive vector of the mid-point of RQ = \frac{\vec{OQ}+\vec{OR}}{2}

=\frac{(\vec{a}-3\vec{b})+(3\vec{a}+5\vec{b})}{2}=2\vec{a}+\vec{b}=\vec{OP}

Hence p is the mid-point of the line Segment RQ

Question 10: The two adjacent sides of a parallelogram are 2\hat{i}-4\hat{j}+5\hat{k}\,\,\,and\,\,\,\hat{i}-2\hat{j}-3\hat{k} Find the unit vector parallel to its diagonal. Also, find its area.

Answer:

Two adjacent sides of a parallelogram are: \vec{a}=2\hat{i}-4\hat{j}+5\hat{k}\,\,\,and\,\,\,\vec{b}=\hat{i}-2\hat{j}-3\hat{k}

The diagonal of parallelogram is given by \vec{a}+\vec{b}

\vec{a}+\vec{b} = (2+1)\hat{i}+(-4-2)\hat{j}+(5-3)\hat{k}=3\hat{i}-6\hat{j}+2\hat{k}

Thus, the unit vector parallel to the diagonal is

\frac{\vec{a}+\vec{b}}{\left|\vec{a}+\vec{b}\right|}=\frac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{3^2+(-6)^2+2^2}}

\frac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{9+36+4}}=\frac{3\hat{i}-6\hat{j}+2\hat{k}}{7}=\frac{3}{7}\hat{i}-\frac{6}{7}\hat{j}+\frac{2}{7}\hat{k}

Area of parallelogram ABCD = \left|\vec{a}\times\vec{b}\right|

\vec{a}\times\vec{b}=\begin{vmatrix} \hat{i} && \hat{j}&& \hat{k}&\\ \\ 2&&-4&&5&\\ \\ 1&&-2&&-3&\\ \end{vmatrix}

=\vec{i}(12+10)-\vec{j}(-6-5)+k(-4+4)=22\hat{i}+11\hat{j}=11(\hat{i}+\hat{j})

\left|\vec{a}*\vec{b}\right|=11\sqrt{2^2+1^2}=11\sqrt{5}

Hence, the area of the parallelogram is 11\sqrt{5} square units.

Question 11: Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}

Answer:

Consider a vector is equally inclined to axes OX, OY, and OZ at angle a.

Then, the direction cosines of the vector are cos a, cos a, and cos a.

Now

cos^2a+cos^2a+cos^2a=1

=>3cos^2a=1

= cosa=\frac{1}{\sqrt{3}}

Therefore, the direction cosines of the vector which are equally inclined to the axes are \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}

Question 12:Let\,\,\vec{a}=\hat{i}+4\hat{j}+2\hat{k},\vec{b}=3\hat{i}-2\hat{j}+7\hat{k}\,\, and\,\,\,\vec{c}=2\hat{i}-\hat{j}+4\hat{k}. Find a vector \vec{d} which is perpendicular to both \vec{a}\,\,and\,\,\vec{b},and\,\,\vec{c}.\vec{d}=15

Answer:

Let\,\,\vec{d}=d_1\hat{i}+d_2\hat{j}+d_3\hat{k}

We know \vec{d} is perpendicular to both \vec{a}\,\,and\,\,\vec{b},we\,\,have:\\ \vec{d}.\vec{a}=0\\ = d_1+4d_2+2d_3=0 \,\,\,\,---(i)

Also,

\vec{d}.\vec{b}=0\\ => 3d_1-2d_2+7d_3=0\,\,\,---(ii)

And

\vec{c}.\vec{d}=15\\ => 2d_1-d_2+4d_3=15\,\,\,---(iii)

Solving (i),(ii),and (iii),we get:

d_1=\frac{160}{3},d_2=-\frac{5}{3}\,\,and\,\,d_3=-\frac{70}{3}

\vec{d}=\frac{160}{3}\hat{i}-\frac{5}{3}\hat{j}-\frac{70}{3}\hat{k}\\ =>\frac{1}{3}(160\hat{i}-5\hat{j}-70\hat{k})

Therefore, the required vector is \frac{1}{3}(160\hat{i}-5\hat{j}-70\hat{k})

Question 13: The scalar product of the vector \hat{i}+\hat{j}+\hat{k} with a unit vector along the sum of vectors 2\hat{i}+4\hat{j}-5\hat{k}\,\,and\,\,\lambda\hat{i}+2\hat{j}+3\hat{k} is equal to one. Find the value of λ.

Answer:

(2\hat{i}+4\hat{j}-5\hat{k})+(\,\,\lambda\hat{i}+2\hat{j}+3\hat{k})

=(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}

Therefore, unit vector along (2\hat{i}+4\hat{j}-5\hat{k})+(\,\,\lambda\hat{i}+2\hat{j}+3\hat{k}) \,\,is\,\,given \,\,as:

\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^2+6^2+(-2)^2}}=\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{4+4\lambda+\lambda^2+36+4}}

=\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{\lambda^2+4\lambda+44}}

Scalar product of (\hat{i}+\hat{j}+\hat{k}) with its unit vector is 1.

=>(\hat{i}+\hat{j}+\hat{k}).\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{\lambda^2+4\lambda+44}}=1

=>\frac{(2+\lambda)+6-2}{\sqrt{\lambda^2+4\lambda+44}}=1

=>\sqrt{\lambda^2+4\lambda+44}=\lambda+6

=>\lambda^2+4\lambda+44=(\lambda+6)^2

=>\lambda^2+4\lambda+44=\lambda^2+12\lambda+36\\ =>8\lambda=8\\=>\lambda=1

Therefore, the value of \lambda is 1.

Question 14: if \vec{a},\vec{b},\vec{c} mutually perpendicular vectors of equal magnitudes are, show that the vector \vec{a}+\vec{b}+\vec{c} equally inclined to \vec{a},\vec{b},\,\,and\,\,\vec{c}.

Answer:

Given that \vec{a},\vec{b},\,\,and\,\,\vec{c}are mutually perpendicular vectors, Hence we have

\vec{a}.\vec{b}=\vec{b}.\vec{c}=\vec{c}.\vec{a}=0

Also,

\left|\vec{a}\right|=\left|\vec{b}\right|=\left|\vec{c}\right|

The vector \vec{a}+\vec{b}+\vec{c} be inclined to \vec{a},\vec{b}\,\,and\,\,\vec{c} at angle \theta_1,\theta_2,\,\,and\,\,\theta_3\,\,respectively.

Now we have:

cos\theta_1=\frac{(\vec{a}+\vec{b}+\vec{c}).\vec{a}}{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{a}\right|}

=\frac{\vec{a}.\vec{a}+\vec{b}.\vec{a}+\vec{c}.\vec{a}}{{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{a}\right|}}

=\frac{\left|\vec{a}\right|^2}{{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{a}\right|}}\,\,\,\,\,\,\,\, [\vec{b}.\vec{a}=\vec{c}.\vec{a}=0]

=\frac{\left|\vec{a}\right|}{{\left|\vec{a}+\vec{b}+\vec{c}\right|}}

cos\theta_2=\frac{(\vec{a}+\vec{b}+\vec{c}).\vec{b}}{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{b}\right|}

=\frac{\vec{a}.\vec{b}+\vec{b}.\vec{b}+\vec{c}.\vec{a}}{{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{b}\right|}}

=\frac{\left|\vec{b}\right|^2}{{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{b}\right|}}\,\,\,\,\,\,\,\, [\vec{a}.\vec{b}=\vec{c}.\vec{b}=0]

=\frac{\left|\vec{b}\right|}{{\left|\vec{a}+\vec{b}+\vec{c}\right|}}

cos\theta_3=\frac{(\vec{a}+\vec{b}+\vec{c}).\vec{c}}{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{c}\right|}

=\frac{\vec{a}.\vec{c}+\vec{b}.\vec{c}+\vec{c}.\vec{c}}{{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{c}\right|}}

=\frac{\left|\vec{c}\right|^2}{{\left|\vec{a}+\vec{b}+\vec{c}\right|\left|\vec{c}\right|}}\,\,\,\,\,\,\,\, [\vec{a}.\vec{c}=\vec{b}.\vec{c}=0]

=\frac{\left|\vec{c}\right|}{{\left|\vec{a}+\vec{b}+\vec{c}\right|}}

Now, as \left|\vec{a}\right|=\left|\vec{b}\right|=\left|\vec{c}\right|,cos\theta_1=cos\theta_2=cos\theta_3.\\\theta_1=\theta_2=\theta_3

Hence, the vector (\vec{a}+\vec{b}+\vec{c}) is equally inclined to \vec{a},\vec{b}\,\,and\,\,\vec{c}.

Question 15: Prove that (\vec{a}+\vec{b}).(\vec{a}+\vec{b})=\left|\vec{a}\right|^2+\left|\vec{b}\right|^2,if only if \vec{a},\vec{b} are perpendicular, given \vec{a}\neq\vec{0},\vec{b}\neq\vec{0}.

Answer:

(\vec{a}+\vec{b}).(\vec{a}+\vec{b})=\left|\vec{a}\right|^2+\left|\vec{b}\right|^2

By \ distributivty \ of \ scalar \ products \ over \ addition\ = \vec{a}.\vec{a}+\vec{a}.\vec{b}+\vec{b}.\vec{a}+\vec{b}.\vec{b}=\left|\vec{a}\right|^2+\left|\vec{b}\right|^2\,\,\,\,\,\,\,

=>\left|\vec{a}\right|^2+2\vec{a}.\vec{b}+\left|\vec{b}\right|^2=\left|\vec{a}\right|^2+\left|\vec{b}\right|^2\,\,\,\,\,\,\,\,\,\,[\vec{a}.\vec{b}=\vec{b}.\vec{a}(Scalar product is commutative)]

=> 2\vec{a}.\vec{b}=0 \\ =>\vec{a}.\vec{b}=0

So\,\, \vec{a}\,\, and\,\,\vec{b}\,\,\, are\,\,\, perpendicular\,\,\,\,\,\,[\vec{a}\ne\vec{0},\vec{b}\ne\vec{0}(Given)]

Question 16: if \theta is the angle between two vectors \vec{a} and \vec{b},then \vec{a}.\vec{b}\geq0\,only\,\,when

(A) \,0<\theta<\frac{\pi}{2}

(B) \,0 \le \theta \le\frac{\pi}{2}

(C) \,0<\theta<\pi

(D) \,0\le\theta \le\pi

Answer:

Let θ be the angle between two vectors\vec{a} \ and\ \vec{b}

Now \vec{a}.\vec{b} = |\vec{a}||\vec{b}| cos\theta

\vec{a}.\vec{b} \geq 0

= cos\theta\geq0

= 0\leq\theta\leq\frac{\pi}{2}

Correct answer is (B) \,0 \le \theta \le\frac{\pi}{2}

Question 17: Let \vec{a} and \vec{b} be two-unit vectors a and \theta is the angle between them.Then \vec{a}+\vec{b} is a unit vector if

(A)\,\,\theta=\frac{\pi}{4}\\ (B)\,\,\theta=\frac{\pi}{3}\\(C)\,\,\theta=\frac{\pi}{2}\\(D)\,\,\theta=\frac{2\pi}{3}

Answer:

We have two unit vectors \vec{a} \ and \ \vec{b} with angle θ between them.

Then, |\vec{a}|\ =\ |\vec{b}| \ = 1

Also if |\vec{a}+\vec{b}| = 1\ then\ \vec{a}+\vec{b}\ is\ a \ unit\ vector.

|\vec{a}+\vec{b}| = 1\\=(\vec{a}+\vec{b})^2 = 1\\=(\vec{a}+\vec{b})\cdot(\vec{a}+\vec{b}) =1 \\ =\vec{a}\cdot\vec{a} + \vec{a}\cdot\vec{b} +\vec{b}\cdot\vec{a}+\vec{b}\cdot\vec{b} = 1 \\ = |\vec{a}|^2 + 2\vec{a}\cdot\vec{b}+|\vec{a}|^2 = 1 \\ =1^2 + 2|\vec{a}||\vec{b}|cos\theta +1^2 = 1 \\ = 1 + 2 \cdot1\cdot1 cos\theta +1=1 \\ cos\theta= -\frac{1}{2} \\ \theta = \frac{2\pi}{3}

Hence, Correct answer is (D)\,\,\theta=\frac{2\pi}{3}

Question 18: The value of \hat{i}.(\hat{j}*\hat{k})+\hat{j}.(\hat{i}*\hat{k})+\hat{k}.(\hat{i}*\hat{j})\,\,is

(A)\,\,0\\(B)\,\,-1\\ (C)\,\,1\\(D)\,\,3

Answer:

\vec{i}\cdot(\vec{j} \times \vec{k}) +\vec{j}\cdot(\vec{i} \times \vec{k})+\vec{k}\cdot(\vec{i} \times \vec{j}) \\ = \vec{i}\cdot\vec{i} + \vec{j}\cdot(-\vec{j})+ \vec{k}\cdot\vec{k} \\ = 1 - 1 + 1 \\= 1

Therefore, correct answer is (C)\,\,1

Question 19: If \theta is the angle between any two vectors \vec{a}\,\,\,and \,\,\,\vec{b}, then \left|\vec{a}.\vec{b} \right|=\left|\vec{a} *\vec{b} \right| when \theta is equal to

(A)\,0 \,\,\, (B)\,\frac{\pi}{4}\,\,(C)\,\frac{\pi}{2}\,\,\,(D)\,\pi

Answer:

Let θ be the angle between \vec{a} \ and \ \vec{b}

\vec{a} \ and \ \vec{b} are non-zero vectors, so |\vec{a} |\ and \ |\vec{b}| \ are \ positive.

|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}| \\= |\vec{a}| |\vec{b}|cos\theta = |\vec{a}||\vec{b}|sin\theta \\ = cos\theta = sin\theta \\= tan\theta = 1 \\ \theta = \frac {\pi}{4}

Hence, Correct answer is (B)\,\frac{\pi}{4}

Also, Check

  • Class 12 NCERT Solutions- Mathematics Part ii – Chapter 10 – Vector Algebra Exercise 10.1
  • Class 12 NCERT Solutions – Mathematics Part ii – Chapter 10 – Vector Algebra Exercise 10.2

Next Article
Class 12 NCERT Solutions- Mathematics Part ii – Chapter 10 – Vector Algebra Miscellaneous Exercise on Chapter 10

D

divyanshuraj8228
Improve
Article Tags :
  • Mathematics
  • School Learning
  • NCERT
  • Class 12
  • NCERT Solutions Class-12
  • Maths-Class-12

Similar Reads

    Class 12 NCERT Solutions - Mathematics Part ii – Chapter 10 – Vector Algebra Exercise 10.2
    In the article, we will solve Exercise 10.2 from Chapter 10, “Vector Algebra” in the NCERT. Exercise 10.2 covers the basics of vectors like scalar and vector components of vectors, section formulas, Multiplication of a Vector by a scalar, etc. Vector Algebra Formula to Solve Exercise 10.2The basic v
    9 min read
    Class 12 NCERT Solutions- Mathematics Part ii – Chapter 10 – Vector Algebra Exercise 10.3
    This article contains , solution for Exercise 10.3 of Chapter 10 – Vector Algebra from Class 12 NCERT - Mathematics .Exercise 10.3 covers the basics of vectors like angle between vectors, magnitude of vectors, projection of vector, etc.Exercise 10.3 of Chapter 10- Vector Algebra deals with the appli
    11 min read
    Class 12 NCERT Solutions- Mathematics Part ii – Chapter 10 – Vector Algebra Exercise 10.1
    Question 1: Represent graphically a displacement of 40 km, 30° east of north.Solution: To graphically represent a displacement of 40 km, 30° east of north: Choose a Scale: For example, 1 cm = 10 km. Hence, 40 km = 4 cm.Draw the Axes: Align the north direction with the positive y-axis and the east di
    3 min read
    Class 12 NCERT Solutions- Mathematics Part I - Chapter 3 Matrices - Miscellaneous Exercise on Chapter 3
    Chapter 3 of the Class 12 NCERT Mathematics textbook, titled "Matrices," covers fundamental concepts related to matrices, including operations such as addition, multiplication, and finding determinants and inverses. The Miscellaneous Exercise in this chapter provides a range of problems that integra
    12 min read
    NCERT Solutions Class 12 - Mathematics Part I - Chapter 3 Matrices - Miscellaneous Exercise on Chapter 3
    Question 1. If A and B are symmetric matrices, prove that AB – BA is a skew-symmetric matrix.Solution: As, it is mentioned that A and B are symmetric matrices, A' = A and B' = B (AB – BA)' = (AB)' - (BA)' (using, (A-B)' = A' - B') = B'A' - A'B' (using, (AB)' = B'A') = BA - AB (AB – BA)' = - (AB - BA
    8 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences