Electrochemistry - Cells and Batteries
Last Updated : 14 Feb, 2023
A collection of electrochemical cells used as a power source is referred to as a battery. An oxidation-reduction reaction forms the basis of an electrochemical cell. In general, every battery is a galvanic cell that generates chemical energy through redox reactions between two electrodes. Batteries are globally used in several electronic devices as a source of power.
Working of a Battery
The battery is an essential component that ensures the smooth operation of many electrical devices. It holds chemical energy and gives various devices electrical energy. The image given below shows us what a conventional cell(battery) looks like.
The battery's capacity to work is supported by an electrochemical cell. Electrochemical cells can range in number from one to many in a battery. Two electrodes are present in every electrochemical cell, and an electrolyte separates them. One electrode produces electrons as a result of the chemical process occurring inside the cell. When the electrons start travelling, electricity is created. A chemical process takes place inside a battery, and the electrons move from one electrode to the next to create an electric circuit.
Let's study battery features and types in the article.
Features of a Battery
A battery should have various features for it to be widely useable. Some of the most important features that a battery should have are,
- For ease of transportation, it should be small and light.
- It should last for a respectably longer time both when it is in use and when it is not.
- A battery or cell must be able to supply a steady voltage. Additionally, the battery or cell's voltage must not change while being used.
Different Types of Battery
There are primarily two types of batteries or functional cells used commercially.
- Primary Batteries or Cells
- Secondary Batteries or Cells
Primary Batteries or Cells
They are known by the name of non-rechargeable batteries. These are the batteries that are only useful when used once. These batteries are not rechargeable or reusable. Alkaline batteries and coin cell batteries are typical examples of primary batteries. Typically, watches, clocks, torches, and other inexpensive electronic gadgets use these types of batteries. These batteries only allow one direction for redox reactions.
Dry Cell
The dry cell, a type of household battery commonly used to power clocks, TV remotes, and other gadgets, is an example of a primary battery. In these cells, a carbon rod serves as the cathode and a zinc container serves as the anode. The cathode is surrounded by a powdered manganese dioxide and carbon combination. A moist paste made of ammonium chloride and zinc chloride is used to fill the area between the container and the rod.
These cells undergo the following redox reaction:
At anode:
Zn(s) → Zn2+ (aq) + 2e–
At cathode:
2e– + 2 NH4+ (aq) → 2 NH3 (g) + H2 (g)
2 NH3 (g) +Zn2+ (aq) → [Zn (NH3)2]2+ (aq)
H2 (g) + 2 MnO2 (S) → Mn2O3 (S) + H2O (l)
Overall cell equation is as follows:
Zn(s) + 2 NH4+ (aq) + 2 MnO2 (S) → [Zn(NH3)2]2+ (aq) + Mn2O3 (S) + H2O (l)
In the area between the cathode and the anode, there is a mixture of MnO2 and a viscous paste of charcoal, zinc chloride, and ammonium chloride (NH4Cl). The porous paper's lining keeps the paste and zinc container from contacting each other directly. It serves as a bridge for salt. Pitch or wax is used to seal the cell from the top.
Mercury Cell
The mercury cell is a new type of cell that is used in small electrical circuits such as those hearing aids, watches, and cameras. A zinc anode and a mercury (II) oxide cathode make up this component. The electrolyte is a KOH and ZnO paste.
The cell undergoes the following reaction:
At anode:
Zn(Hg) + 2OH¯→ ZnO(s) + H2O+ 2e¯
At cathode:
HgO(s) + H2O+ 2e¯ → Hg(l) + 2OH¯
Overall cell equation is as follows:
Zn + HgO(s) → ZnO(s) + Hg(l)
It has the benefit that its potential stays basically constant during the course of its existence. The mercury cell has a voltage of about 1.35 V.
Secondary Batteries or Cells
These batteries are also called Rechargeable batteries. These batteries are long-lasting, reusable, and excellent for a variety of uses. They are a little more expensive than primary batteries, but when used carefully, safely, and with caution, they last the users longer. Lead-acid batteries and lithium-ion batteries are a few common examples of secondary batteries. The primary applications for these batteries are robots, solar lighting, luxury toys, etc.
Lead Storage Battery
A lead storage battery used in cars and inverters can only be recharged a select number of times. A lead anode and a lead grid filled with lead dioxide make up the cathode of a lead storage battery. As an electrolyte, a 38% concentration of sulfuric acid is utilized.
At anode:
Pb → Pb2++ 2e–
Pb+ SO42– → PbSO4 + 2e–
At cathode:
2e–+ PbO2 + 4H+ → Pb2++ 2H2O
2 e–+ PbO2 + 4H++ SO42- → PbSO4 + 2H2O
These batteries can be recharged by transferring the charge in the other direction and reversing the process, which turns PbSO4 back into Pb and PbO2.
Overall reaction can be written as:
2PbSO4 (s) + 2H2O → Pb(s) + PbO2 (s) + 2H2SO4
It functions as a voltaic cell and generates electricity when used to start the car's engine. It functions as an electrolytic cell while being recharged.
Nickel Cadmium Storage Cell
Another rechargeable cell is the nickel-cadmium storage cell. Although it costs more than lead storage batteries, it lasts longer than lead storage cells. However, because it is lighter and smaller, there are certain benefits. Appliances that are portable and cordless can use it.
- It has a cadmium anode and a metal grid acting as a cathode that contains NiO2.
- The electrolyte used in this cell is KOH.
The reaction can be written as:
At anode:
Cd(s) + 2OH¯ → CdO(s) +H₂O(l) + 2e¯
At cathode:
2Ni(OH3)(s) + 2e¯ → 2Ni(OH)2(s) +2OH¯(aq)
Overall cell equation is as follows:
Cd(s) + 2Ni(OH3)(s) → CdO(s) + 2Ni(OH)2(s) + H2O(l)
The reaction byproducts typically attach to the electrodes and can be changed back into something else by charging the cell. Similar to how a lead storage battery is charged.
Lithium Ion Battery
A lithium-ion battery is a specific kind of rechargeable battery that stores energy through the reversible reduction of lithium ions. It is the most common type of battery used in electric vehicles and portable consumer gadgets. Li-ion batteries don't suffer from the memory effect, have low self-discharge, and have high energy densities.
During a discharge cycle, lithium atoms in the anode are ionized and separated from their electrons. The lithium ions move from the anode through the electrolyte to the cathode, where they combine with their electrons and turn into electrically neutral molecules. Because of their small size, the lithium ions can pass through a micro-permeable separator that separates the anode from the cathode.
Different materials can be used as electrodes in Li-ion batteries. The most common cathode and anode materials are lithium cobalt oxide (cathode) and graphite (anode), and these materials are most commonly found in portable electronic devices like laptops and cell phones. Lithium iron phosphate and lithium manganese oxide, which are used in hybrid and electric vehicles, respectively, are additional cathode components. Ether, a group of organic compounds, is frequently utilized in Li-ion batteries as an electrolyte.
Oxidation-reduction (Redox) reactions take place inside a lithium-ion battery.
Cathode is where reduction takes place. Lithium-cobalt oxide is produced, when cobalt oxide and lithium ions react (LiCoO2). The partial reaction is:
CoO2 + Li+ + e- → LiCoO2
Anode is where oxidation takes place. There, lithium ions and graphite (C6) are formed by the graphite intercalation complex (LiC6). The partial response is:
LiC6 → C6 + Li+ + e-
Complete reaction will be, (right to left = charging; left to right = discharging).
LiC6 + CoO2 ⇄ C6 + LiCoO2
Uses of Battery
Batteries are used for a variety of purposes. The most common uses of batteries are:
- Batteries are used in Medical Equipment and Home Appliances.
- Implantable medical devices like pacemakers and insulin pumps utilize bio-batteries.
- Batteries are used in Construction.
- Batteries can be used in toys as well as in different gifting products.
- Batteries are used in Emergency Response and Firefighting.
- Batteries are used in Military Operations, surveillance, and spying devices.
- Batteries are used in Electric and normal automobile batteries.
Read, More
Similar Reads
CBSE Class 12 Chemistry Notes CBSE Class 12 Chemistry Notes: Chemistry is an important subject in CBSE Class 12th. It is a very scoring exam in board exam as well as IIT JEE entrance. By taking help of this CBSE Class 12th Chemistry notes, you can ace the CBSE Class 12th board exam. GeeksforGeeks has compiled the complete notes
9 min read
Chapter 1: The Solid State
Difference between Crystalline and Amorphous SolidsA solid state is simply one of the states of matter. One of the many different states of matter is solid. Solids have a distinct volume, mass, and shape. Solids differ from liquids and gases in that they exhibit unique characteristics. Â These solid states or shapes depending on how the particles are
7 min read
Crystal Lattice and Unit CellIn crystalline solids, their constituent particles have a definite arrangement in three dimensions. The positions of these particles in the crystal relative to each other are usually represented by points. The dispensation of these unendurable sets of points is called a space lattice. The positions
7 min read
Calculate the Number of Particles per unit cell of a Cubic Crystal SystemWe are mostly surrounded by solids, which we use more frequently than liquids and gases. We require solids with a wide range of properties for various applications. These properties are determined by the nature of the constituent particles and the binding forces that exist between them. As a result,
5 min read
Close Packing in CrystalsIn the formation of crystals, the constituent particles (atoms, ions, or molecules) are closely intertwined. A tightly packed arrangement is one in which maximum available space is occupied by leaving minimum free space. This corresponds to the condition of the maximum possible density. The closer t
7 min read
Packing Efficiency of Unit CellA crystal lattice is made up of a relatively large number of unit cells, each of which contains one constituent particle at each lattice point. A three-dimensional structure with one or more atoms can be thought of as the unit cell. Regardless of the packing method, there are always some empty space
10 min read
Imperfections or Defects in a SolidMatter can exist in broadly three states named solids, liquids, and gases. Solids are those substances that have short intermolecular forces between them that keep molecules (atoms or ions) closely packed. They have definite mass, volume, and shape. Their intermolecular forces are strong and intermo
11 min read
Chapter 2: Solutions
What is a Solution?InSolutions are a part of our daily lives because they can be found in almost everything we use in our daily lives, such as soda, deodorant, sugar, salt, and so on. A solution is a type of mixture in which two or more substances combine to form a single solution; it can also be described as simple,
11 min read
SolubilitySolubility is a fundamental concept in chemistry that describes the ability of a substance to dissolve in a particular solvent under specific conditions to form a solution. A fluid may or may not dissolve completely in a fluid. Understanding the concept of solubility is essential in many fields of s
12 min read
Vapour PressureVapour pressure is the force exerted by a liquid's (or solid's) vapour above the surface of the liquid. At a particular temperature and thermodynamic equilibrium, this pressure is formed in a closed container. The rate of liquid evaporation is controlled by the equilibrium vapour pressure. The vapou
13 min read
Colligative PropertiesColligative Properties of any solution is the property of the solution that depends on the ratio of the total number of solute particles and the total number of solvent particles. Changing the moles or number of particles of solute or solvent changes the colligative properties of the solution. These
11 min read
Osmosis and Osmotic PressureA solution is a homogeneous mixture of two or more particles with particle sizes smaller than one nanometer. Sugar and salt solutions in water, as well as soda water, are common examples of solutions. In a solution, all of the components appear as a single phase. There is particle homogeneity, which
11 min read
Abnormal Molar MassesIn chemistry, abnormal molar masses occur when the molar masses are estimated and are higher or lower than the predicted value. The colligative qualities are used to calculate these. Elevation of boiling point, decreased relative vapour pressure, freezing point depression, and alleviation of osmotic
8 min read
Chapter 3: Electrochemistry
Chapter 4: Chemical Kinetics
Chapter 5: Surface Chemistry
Adsorption - Definition, Mechanism and TypesAdsorption is the adhesion of atoms, ions, or molecules to a surface from a gas, liquid, or dissolved solids. This process forms an adsorbate film on the adsorbent's surface. This differs from absorption, which occurs when a fluid dissolves or permeates a liquid or solid. Adsorption is a surface phe
7 min read
Adsorption vs AbsorptionAdsorption and Absorption are the two important processes of physical chemistry that help in various industrial processes to manufacture and purification of various chemical compounds. While the two terms sound almost similar there exists a significant difference between them. Adsorption is a surfac
10 min read
Catalysis - Definition, Mechanism, Types, CharacteristicsCatalysis in Chemistry is defined as the process in which the rate of the reaction is influenced by the presence of some specific substance. These specific substances are called Catalysts. The catalyst is never consumed during the chemical reaction. A catalyst changes the activation energy of the re
8 min read
ColloidsColloids or Colloidal Solution is a type of mixture in which insoluble components are suspended on a microscopic scale in some another component. Colloids are essential components in the daily lives of the common man, as we use or consume colloids and we even don't know. From Jellys to Mayonese to t
11 min read
Classification of ColloidsBefore we get into the specifics of how we classify colloids, it's important to first define what a colloid is. A colloid is a material made up of big molecules mixed with another substance in chemistry. This encompasses a wide range of items, many of which you may already have in your house, which
8 min read
Emulsions - Definition, Types, Preparation, PropertiesDid you know that "emulsion" comes from the Latin word "mulgeo," which meaning "to milk"? Milk is a fat-water emulsion containing a variety of additional ingredients. But what precisely are Emulsions, and what role do they play in our daily lives and in the workplace? Emulsions are combinations of t
10 min read
Chapter 6: General Principles and Processes of Isolation of Elements
Occurrence of Metals, Minerals and OresMetals are a crucial element of our existence, even if we don't realize it. Since the industrial era, we have had a heavy reliance on metals. From construction to jewellery, we use them for everything. But where do we acquire these metals from? Let us look into their occurrence. Before studying the
8 min read
What is meant by Concentration of Ores?Metals are found in ore in complexes with other elements. The process of removing metal from its ore is known as metal extraction. The methods of extracting metals from their ores and refining them are referred to as metallurgy. All of the metals cannot be extracted using a single process. Depending
8 min read
Occurrence and Extraction of MetalsMetals are minerals or substances that occur naturally beneath the Earth's surface. The majority of metals are lustrous or glossy. Metals are inorganic, which implies they were formed from non-living substances. Metals are typically found in the form of metal ores, which are linked to one another an
6 min read
Ellingham DiagramThe Gibbs equation enables us to predict the spontaneity of a process based on enthalpy and entropy measurements. The Ellingham diagram was developed by H.G.T. Ellingham to predict the spontaneity of metal oxide reduction. One of the most straightforward graphical representations of Thermodynamic st
7 min read
Oxidation and Reduction ReactionsOxidation and Reduction reactions are simply called Redox reactions. There are chemical reactions in which the oxidation number of the chemical species involved in the reaction changes. Oxidation and reduction Reactions involve a wide variety of processes. For example, oxidation-reduction reactions
8 min read
Methods of Refining of MetalsMinerals and ores abound in the earth's crust. Some ores have proven to be a valuable resource for humanity. Iron, for example, derived from iron ore (Hematite), laid the groundwork for the industrial revolution. Aluminium, on the other hand, was a critical strategic resource for aviation during Wor
7 min read
Uses of Aluminum, Copper, Zinc and IronThe earth's crust is abundant in minerals and ores. Some ores have proven to be a valuable resource for humanity. Iron, for example, derived from iron ore (Hematite), laid the groundwork for the industrial revolution. Aluminum, on the other hand, was a critical strategic resource for aviation during
8 min read
Chapter 7: The p-Block Elements
Group 15 elements - The Nitrogen FamilyThe contemporary periodic table, devised by Dimitri Mendeleev, lists all known elements according to their atomic number, which is unique to each element. The periodic table was created as a result of such an arrangement. The items with comparable qualities were grouped together in a column. Nitroge
6 min read
Dinitrogen - Definition, Preparation, Properties, UsesNitrogen is the lightest element in Periodic Table Group 15, also known as the pnictogens. Dinitrogen, a colourless and odourless diatomic gas with the formula N2, is formed when two atoms of the element join together at STP. Dinitrogen is the most abundant uncombined element, accounting for around
6 min read
Ammonia |Structure, Properties, Preparation, UsesAmmonia (NHâ) is a colorless gas with a sharp, pungent odor. It is a compound of nitrogen and hydrogen and plays a crucial role in both the industrial sector and biological processes. Let's learn about ammonia in detail, including its structure, properties and uses. AmmoniaAmmonia is nitrogen and hy
7 min read
Oxides of NitrogenNitrogen combines with oxygen to generate nitrogen oxides in a variety of forms. Its oxides have distinct oxidation states, ranging from +1 to +5. Nitrogen oxides with a greater oxidation state are more acidic than those with a lower oxidation state. Nitrogen Oxides are a combination of gases that i
9 min read
Allotropes of PhosphorusDespite the fact that people have been using the periodic table with phosphorus (P) in it for thousands of years, it was not until 1669 that it was isolated and named by a chemist named Brand. Phosphorus is an element that cannot be found naturally in our environment. It is highly reactive. Phosphor
5 min read
Phosphine - Structure, Preparation, Properties, UsesThe final electron of a P block element enters one of the three p-orbitals of the shell in which it is found. There are six groups of p-block elements since a p-subshell has three degenerate p-orbitals, each of which may hold two electrons. Because of their tendency to lose an electron, P block elem
5 min read
Phosphorus Halides - Structure, Properties, Uses, EffectsPhosphorus is required for life, mostly through phosphates, which are molecules that contain the phosphate ion. Phosphates are found in DNA, RNA, ATP, and phospholipids, which are all complex molecules that are required by cells. Phosphate was first found in human urine, and bone ash was a significa
8 min read
Oxoacids of PhosphorusOxoacids are acids that contain oxygen. Phosphorus is one such element that can be used to create a variety of oxoacids. H3PO4, H3PO3, and other common oxyacids The phosphorus atom is tetrahedrally surrounded by other atoms in phosphorus oxoacids. In general, it is obvious that these acids have at l
6 min read
ChalcogensChalcogens are the Group 16 elements of the modern periodic table consisting of 5 elements oxygen, sulphur, selenium, tellurium and polonium. The elements in this group are also known as chalcogens or ore-forming elements because many elements can be extracted from sulphide or oxide ores. The chalco
9 min read
Dioxygen - Definition, Properties, Preparation, UsesOxygen is a member of the periodic table's chalcogen group, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements and other compounds. Oxygen is the most abundant element on Earth, and it is the third-most abundant element in the universe after hydrogen and
5 min read
Simple Oxides - Definition, Types, ExamplesOxides are binary chemicals generated when oxygen reacts with other elements. In nature, oxygen is extremely reactive. They create oxides when they react with metals and nonmetals. Based on their acid-base properties, oxides are classified as neutral, amphoteric, basic, or acidic. An acidic oxide is
5 min read
Ozone - Preparation, Properties, Uses, EffectsOzone is too reactive to stay in the atmosphere at sea level for long. It is formed from atmospheric oxygen in the presence of sunlight at a height of about 20 kilometres. This ozone layer shields the earth's surface from an excess of ultraviolet (UV) radiation. It is an unstable, blue, diamagnetic
7 min read
Allotropes of SulphurThe tenth most prevalent element in the universe is sulphur. It can also be found in the form of sulphide in a variety of meteorites. The existence of a sulphur element in molten, gaseous, and solid states gives the Jupiter moon lo its unusual colours. Sulphur is the sixth most prevalent element on
7 min read
Sulphur Dioxide - Structure, Preparation, Properties, UsesThe p-block, which spans groups 13 to 18, is located on the right side of the normal periodic table. Their electrical configuration is ns2 np1â6 in general. Despite being the first element in group 18, helium is not part of the p-block. Except for the first row, each row in the table has six p-eleme
8 min read
Oxoacids of SulphurOxoacids are oxygen-containing acids. Many oxoacids, such as H2SO4, H2SO3, and others, are known to be formed by sulphur. When sulphur is coordinated to oxygen, it forms a tetrahedral structure in oxoacids. Sulfur oxoacids are sulphur, oxygen, and hydrogen-containing chemical compounds. Sulfuric aci
6 min read
Sulfuric Acid - H2SO4Sulfuric Acid or Sulphuric Acid is a mineral acid consisting of one Sulfur, four Oxygen, and two Hydrogen atoms. The chemical or molecular formula of Sulfuric Acid is H2SO4. Sulfuric Acid is one most important commercially used chemicals. It is also known as Mattling acid or Hydrogen Sulfate or Vitr
8 min read
Group 17 Elements: The HalogensThe Halogens are the elements in the periodic table of Group 17 of the periodic table. Fluorine, chlorine, bromine, and iodine are examples of reactive nonmetals. Halogens are nonmetals that are extremely reactive. These elements have a lot in common in terms of properties. Group 17 elements are kno
8 min read
Chlorine (Cl)Chlorine is a chemical element that is represented by the symbol Cl. Chlorine is present in the 17th Group (Halogen Group) and 3rd Period of the Periodic table. Chlorine is the second lightest halogen that lies between Fluorine and Bromine in the halogen group. Chlorine is a yellow-green, pungent-sm
6 min read
Hydrogen Chloride - Definition, Preparation, Properties, UsesAs a hydrogen halide, the compound hydrogen chloride has the chemical formula HCl. It is a colourless gas at ambient temperature that emits white fumes of hydrochloric acid when it comes into contact with air-water vapour. In technology and industry, hydrogen chloride gas and hydrochloric acid are c
7 min read
Oxoacids of Halogens - Definition, Properties, StructureThe elements of Group 17 from top to bottom are fluorine, chlorine, bromine, iodine, and astatine. They are referred to as halogens because they create salt. This group's members are very similar to one another. They have a consistent pattern of physical and chemical features. The valence shell of e
7 min read
Interhalogen CompoundsThe p-block elements are known to be those elements in which the electron enters in one of the three orbitals of the p-block. There are 6 groups of p-block elements. The properties of p-block elements are that they are shiny and are good conductor of heat and electricity since they have free electro
6 min read
Group 18 Elements - Characteristics of Noble GasesThe group's members have eight electrons in their outermost orbit (except helium which has two electrons). As a result, they have a stable configuration. Group 18 elements are gases that are chemically unreactive, meaning they do not form many compounds. Be a result, the elements are referred to as
7 min read
Chapter 8: d- and f-Block Elements
Position of Elements in the Periodic TableThe elements in the middle of the periodic table, from Group 3 to 12, are referred to as d-block elements. The name d-block comes from the fact that the final electron enters the d-orbital of the penultimate shell. These are frequently referred to as transition elements because their properties fall
6 min read
Electronic Configuration of the d-block ElementsElectronic Configuration of the d-block elements are those that can be found in the contemporary periodic table from the third to the twelfth groups. These elements' valence electrons are located in the d orbital. d-block elements are sometimes known as transition elements or transition metals. The
7 min read
General Properties of Transition Elements (d-block)Elements with partially filled d orbitals are known as transition elements (sometimes known as transition metals). Transition elements are defined by IUPAC as elements with a partially full d subshell or elements capable of forming stable cations with an incompletely filled d orbital. In general, an
7 min read
Lanthanides - Definition, Configuration, PropertiesLanthanides are the contemporary periodic table's rare earth elements, with atomic numbers ranging from 58 to 71 after Lanthanum. Rare earth metals are so-called because these elements are extremely rare (3 Ã 10-4 % of the Earth's crust). As lanthanide orthophosphates, they are accessible in 'monazi
8 min read
Actinides - Definition, Properties, Formation, UsesThe d and f block mainly contains elements that include groups 3-12. The f block has elements in which 4f and 5f are progressively filled. These elements are placed below the periodic table in a separate table. The d and f block elements are majorly known as transition or inner transition elements.
9 min read
Some Applications of d and f-block ElementsTransition metals are typically characterized as elements with or capable of forming partially filled 'd' orbitals. Transition elements are d-block elements in groupings of three to eleven. Inner transition metals, which include the lanthanides and actinides, are another name for the f block element
6 min read
Chapter 9: Coordination Compounds