Chalcogens are the Group 16 elements of the modern periodic table consisting of 5 elements oxygen, sulphur, selenium, tellurium and polonium. The elements in this group are also known as chalcogens or ore-forming elements because many elements can be extracted from sulphide or oxide ores. The chalcogens are the elements that belong to group 16 of the modern periodic table (or the oxygen family).
In this article, we are going to learn about what are chalcogens, elements under the chalcogen family and their properties in detail.
What are Chalcogens?
Group 16 elements also called Chalcogens are the elements in the oxygen family. They are a group of five elements: oxygen, sulfur, selenium, tellurium, and polonium. Sometimes oxygen is excluded from the chalcogen family for generalizing the chemical properties of the group. The chemical properties of oxygen are quite different from the other members of the group.
The synthetic element Livermorium (symbol Lv) is also considered a part of the chalcogen family.
How to Isolate Chalcogens?
To isolate elements of chalogens various methods are used that include,
- Oxygen is one of the largest constituent of air and separation of air results in the formation of oxygen and nitrogen.
- We can easily extract Sulfur from natuarla oil and petroleum.
- Tellurium and Selenium are produced as the byproduct of refining of copper.
- Particle accelerators is used to create Livermorium and Polonium.
Elements of Chalcogen Family
In the modern periodic table, Chalcogens is composed of five elements: oxygen, sulphur, selenium, tellurium, and polonium. Oxygen is abundant on the planet. When the proportions of different types of atoms found in the universe were calculated, oxygen was determined to be the fourth most abundant element after hydrogen, helium, and neon. It constitutes about 89% of water, 46% of the earth's crust and 20 % of the air.
Electronic Configuration of Chalcogen Family
The symbol, atomic number and electronic configuration of elements of Chalcogens are given below in this article.
|
Oxygen | O | 8 | [He] 2s2 2p4 |
Sulphur | S | 16 | [Ne] 3s2 3p4 |
Selenium | Se | 34 | [Ar] 3d10 4s2 4p4 |
Tellurium | Te | 52 | [Kr] 4d10 5s2 5p4 |
Polonium | Po | 84 | [Xe]4f14 5d10 6s2 6p4 |
Now let's learn about them in detail.
Oxygen
Oxygen is denoted by the symbol O. It is a colourless and odourless gas that is converted into carbon dioxide during the human respiration process. Oxygen is a diatomic molecule. Oxygen is also found in trace amounts as a triatomic molecule (O3), which is known as ozone. Many elements combine easily with oxygen. The evolution of heat energy occurs during the combination of some elements; this process is known as combustion.
Sulphur
Symbol S represents sulfur. It's a nonmetal that ranks ninth in terms of cosmic abundance. Sulphur can be found in both the combined and free states. Sulfates account for about 0.09 per cent of the sulphur found in seawater. The meteorite contains 12% sulphur, and a significant amount of sulphur is found in underground deposits of pure sulphur present in dome-like structures. Sulphur is formed in this environment by the action of anaerobic bacteria on sulphate minerals such as gypsum.
Selenium
Selenium is rarer than oxygen or sulphur. It can be found in a few minerals both free and combined with heavy metals (such as lead, silver, or mercury). Under typical settings, the grey metallic form of selenium is the most stable form of the element.
Tellurium
Tellurium is a chemical element with the atomic number 52 and properties intermediate between metals and nonmetals. It is one of the earth's crust's rarest stable elements. It is frequently found in its free state as well as in compounds with elements such as copper, lead, silver, and gold.
Polonium
It is the rarest element in the group of sixteen elements. It is a radioactive substance. Polonium is occasionally used in alpha radiation applications in science.
Physical Properties of Group 16 Elements (Chalcogens Family)
Some important physical properties of Group 16 elements are:
- Electronic Configuration
- Atomic/Ionic Radii
- Ionization Enthalpies
- Electron Gain Enthalpies
- Electronegativities
- Metallic Nature
- Melting and Boiling Points
Now, we will study them in detail.
Electronic Configuration
Group 16 elements or elements of the oxygen family have six electrons in their outermost shell. So the general electronic configuration of them is ns2, np4. Electronic configuration of each member of the oxygen family is,
|
Oxygen(O) | [He] 2s2 2p4 |
Sluphur(S) | [Ne] 3s2 3p4 |
Selenium(Se) | [Ar] 3d10 4s2 4p4 |
Tellurium(Te) | [Kr] 4d10 5s2 5p4 |
Polonium(Po) | [Xe]4f14 5d10 6s2 6p4 |
Atomic/Ionic Radii
Atomic radii or ionic radii of elements increase as they move down the periodic table. The chalcogen with the smallest atomic and ionic radius (excluding livermorium) is oxygen, and the chalcogen with the largest (excluding livermorium) is polonium. The addition of protons and the increase in effective nuclear charge cause elements' atomic radii to decrease over time. As a result, the atomic radius of oxygen will be much smaller than that of lithium.
Ionization Enthalpies
Ionization Enthalpies of the elements of the oxygen family are less compared to those of the nitrogen family. The general trend of moving down the group from oxygen to polonium, suggests that the ionization enthalpy or potential decreases on moving down the group.
On moving left to right the general trend of the ionization enthalpy suggest that it increases along the period.
Electron Gain Enthalpies
Electron Gain Enthalpies decrease with an increase in the atom's size. As a result, the electron gain enthalpies of the chalcogens decrease as one moves down the group. It is worth noting that oxygen has a lower negative electron gain enthalpy than sulphur, which can be attributed to the compressed atomic structure of oxygen, which contributes to interelectronic repulsion between the valence electrons and any other approaching electron.
Electronegativities
Electronegativity decreases as one moves down a group due to a variety of factors, including an increase in atomic radius and an increase in electron-electron repulsion. The most electronegative chalcogen is oxygen, and the least electronegative chalcogen is polonium (livermorium not considered).
Metallic Nature
Non-metal elements include oxygen and sulphur. Metalloids include selenium and tellurium. Under normal conditions, polonium has metallic properties. It should be noted, however, that polonium is a radioactive element.
Melting and Boiling Points
Melting and Boiling points of elements increase as they progress down a group due to the increase in atomic sizes and atomic masses (as a result of increased intermolecular forces of attraction). Among chalcogens, oxygen has the lowest melting and boiling points. The significant difference in the melting and boiling points of sulphur and oxygen can be attributed to the fact that oxygen exists in the atmosphere as a diatomic molecule, whereas sulphur is typically found as a polyatomic molecule.
Note:
- Fluorine is the most electronegative element while Oxygen is the second most electronegative element.
- All the members of group 16 i.e. oxygen family exhibit allotropy.
- Sulphur(S) in the oxygen family show catenation property similar to that of carbon.
Chemical Properties of Group 16 Elements
Some important chemical properties of Group 16 elements are:
- Allotropes
- Oxidation States
- Reactions with Hydrogen
Now, we will study them in detail.
Allotropes
Almost all chalcogens have multiple allotropes. The most common oxygen allotropes are dioxygen and ozone. In fact, there are nine known allotropes of oxygen. Furthermore, there are over 20 known allotropes of sulphur. Selenium is known to have at least five different allotropes, while polonium is known to have two. Monoclinic sulphur and rhombic sulphur are the two most stable allotropic forms of sulphur. It should be noted that selenium and tellurium are both crystalline and amorphous elements.
Oxidation States
Because the chalcogens' general electronic configuration is ns2 np4, they can achieve a stable electronic configuration by gaining two electrons or participating in covalent bonding. When they gain two electrons, the ion formed has the general formula M2- (where M denotes a chalcogen). The chalcogens exhibit regular oxidation states of -2, +2, +4, and +6.
Reactions with Hydrogen
When chalcogens react with dihydrogen, they usually form hydrides with the general formula H2M (where M can be any chalcogen – oxygen, sulphur, selenium, tellurium, or polonium). This chemical reaction takes the following general form:
M (chalcogen) + H2 (dihydrogen) → H2M (hydride of the chalcogen)
Chemistry of Livermorium
Livermorium with atomic number Z=116 is the newest member of the Oxygen family. In the May of 2012, IUPAC approved the name "Livermorium" (symbol Lv) for the element with atomic number 116 which becomes the newest member of the Group 16 elements. It is a heavy element and is radioactive in nature.
Also, Check
Similar Reads
CBSE Class 12 Chemistry Notes CBSE Class 12 Chemistry Notes: Chemistry is an important subject in CBSE Class 12th. It is a very scoring exam in board exam as well as IIT JEE entrance. By taking help of this CBSE Class 12th Chemistry notes, you can ace the CBSE Class 12th board exam. GeeksforGeeks has compiled the complete notes
9 min read
Chapter 1: The Solid State
Difference between Crystalline and Amorphous SolidsA solid state is simply one of the states of matter. One of the many different states of matter is solid. Solids have a distinct volume, mass, and shape. Solids differ from liquids and gases in that they exhibit unique characteristics. Â These solid states or shapes depending on how the particles are
7 min read
Crystal Lattice and Unit CellIn crystalline solids, their constituent particles have a definite arrangement in three dimensions. The positions of these particles in the crystal relative to each other are usually represented by points. The dispensation of these unendurable sets of points is called a space lattice. The positions
7 min read
Calculate the Number of Particles per unit cell of a Cubic Crystal SystemWe are mostly surrounded by solids, which we use more frequently than liquids and gases. We require solids with a wide range of properties for various applications. These properties are determined by the nature of the constituent particles and the binding forces that exist between them. As a result,
5 min read
Close Packing in CrystalsIn the formation of crystals, the constituent particles (atoms, ions, or molecules) are closely intertwined. A tightly packed arrangement is one in which maximum available space is occupied by leaving minimum free space. This corresponds to the condition of the maximum possible density. The closer t
7 min read
Packing Efficiency of Unit CellA crystal lattice is made up of a relatively large number of unit cells, each of which contains one constituent particle at each lattice point. A three-dimensional structure with one or more atoms can be thought of as the unit cell. Regardless of the packing method, there are always some empty space
10 min read
Imperfections or Defects in a SolidMatter can exist in broadly three states named solids, liquids, and gases. Solids are those substances that have short intermolecular forces between them that keep molecules (atoms or ions) closely packed. They have definite mass, volume, and shape. Their intermolecular forces are strong and intermo
11 min read
Chapter 2: Solutions
What is a Solution?InSolutions are a part of our daily lives because they can be found in almost everything we use in our daily lives, such as soda, deodorant, sugar, salt, and so on. A solution is a type of mixture in which two or more substances combine to form a single solution; it can also be described as simple,
11 min read
SolubilitySolubility is a fundamental concept in chemistry that describes the ability of a substance to dissolve in a particular solvent under specific conditions to form a solution. A fluid may or may not dissolve completely in a fluid. Understanding the concept of solubility is essential in many fields of s
12 min read
Vapour PressureVapour pressure is the force exerted by a liquid's (or solid's) vapour above the surface of the liquid. At a particular temperature and thermodynamic equilibrium, this pressure is formed in a closed container. The rate of liquid evaporation is controlled by the equilibrium vapour pressure. The vapou
13 min read
Colligative PropertiesColligative Properties of any solution is the property of the solution that depends on the ratio of the total number of solute particles and the total number of solvent particles. Changing the moles or number of particles of solute or solvent changes the colligative properties of the solution. These
11 min read
Osmosis and Osmotic PressureA solution is a homogeneous mixture of two or more particles with particle sizes smaller than one nanometer. Sugar and salt solutions in water, as well as soda water, are common examples of solutions. In a solution, all of the components appear as a single phase. There is particle homogeneity, which
11 min read
Abnormal Molar MassesIn chemistry, abnormal molar masses occur when the molar masses are estimated and are higher or lower than the predicted value. The colligative qualities are used to calculate these. Elevation of boiling point, decreased relative vapour pressure, freezing point depression, and alleviation of osmotic
8 min read
Chapter 3: Electrochemistry
Chapter 4: Chemical Kinetics
Chapter 5: Surface Chemistry
Adsorption - Definition, Mechanism and TypesAdsorption is the adhesion of atoms, ions, or molecules to a surface from a gas, liquid, or dissolved solids. This process forms an adsorbate film on the adsorbent's surface. This differs from absorption, which occurs when a fluid dissolves or permeates a liquid or solid. Adsorption is a surface phe
7 min read
Adsorption vs AbsorptionAdsorption and Absorption are the two important processes of physical chemistry that help in various industrial processes to manufacture and purification of various chemical compounds. While the two terms sound almost similar there exists a significant difference between them. Adsorption is a surfac
10 min read
Catalysis - Definition, Mechanism, Types, CharacteristicsCatalysis in Chemistry is defined as the process in which the rate of the reaction is influenced by the presence of some specific substance. These specific substances are called Catalysts. The catalyst is never consumed during the chemical reaction. A catalyst changes the activation energy of the re
8 min read
ColloidsColloids or Colloidal Solution is a type of mixture in which insoluble components are suspended on a microscopic scale in some another component. Colloids are essential components in the daily lives of the common man, as we use or consume colloids and we even don't know. From Jellys to Mayonese to t
11 min read
Classification of ColloidsBefore we get into the specifics of how we classify colloids, it's important to first define what a colloid is. A colloid is a material made up of big molecules mixed with another substance in chemistry. This encompasses a wide range of items, many of which you may already have in your house, which
8 min read
Emulsions - Definition, Types, Preparation, PropertiesDid you know that "emulsion" comes from the Latin word "mulgeo," which meaning "to milk"? Milk is a fat-water emulsion containing a variety of additional ingredients. But what precisely are Emulsions, and what role do they play in our daily lives and in the workplace? Emulsions are combinations of t
10 min read
Chapter 6: General Principles and Processes of Isolation of Elements
Occurrence of Metals, Minerals and OresMetals are a crucial element of our existence, even if we don't realize it. Since the industrial era, we have had a heavy reliance on metals. From construction to jewellery, we use them for everything. But where do we acquire these metals from? Let us look into their occurrence. Before studying the
8 min read
What is meant by Concentration of Ores?Metals are found in ore in complexes with other elements. The process of removing metal from its ore is known as metal extraction. The methods of extracting metals from their ores and refining them are referred to as metallurgy. All of the metals cannot be extracted using a single process. Depending
8 min read
Occurrence and Extraction of MetalsMetals are minerals or substances that occur naturally beneath the Earth's surface. The majority of metals are lustrous or glossy. Metals are inorganic, which implies they were formed from non-living substances. Metals are typically found in the form of metal ores, which are linked to one another an
6 min read
Ellingham DiagramThe Gibbs equation enables us to predict the spontaneity of a process based on enthalpy and entropy measurements. The Ellingham diagram was developed by H.G.T. Ellingham to predict the spontaneity of metal oxide reduction. One of the most straightforward graphical representations of Thermodynamic st
7 min read
Oxidation and Reduction ReactionsOxidation and Reduction reactions are simply called Redox reactions. There are chemical reactions in which the oxidation number of the chemical species involved in the reaction changes. Oxidation and reduction Reactions involve a wide variety of processes. For example, oxidation-reduction reactions
8 min read
Methods of Refining of MetalsMinerals and ores abound in the earth's crust. Some ores have proven to be a valuable resource for humanity. Iron, for example, derived from iron ore (Hematite), laid the groundwork for the industrial revolution. Aluminium, on the other hand, was a critical strategic resource for aviation during Wor
7 min read
Uses of Aluminum, Copper, Zinc and IronThe earth's crust is abundant in minerals and ores. Some ores have proven to be a valuable resource for humanity. Iron, for example, derived from iron ore (Hematite), laid the groundwork for the industrial revolution. Aluminum, on the other hand, was a critical strategic resource for aviation during
8 min read
Chapter 7: The p-Block Elements
Group 15 elements - The Nitrogen FamilyThe contemporary periodic table, devised by Dimitri Mendeleev, lists all known elements according to their atomic number, which is unique to each element. The periodic table was created as a result of such an arrangement. The items with comparable qualities were grouped together in a column. Nitroge
6 min read
Dinitrogen - Definition, Preparation, Properties, UsesNitrogen is the lightest element in Periodic Table Group 15, also known as the pnictogens. Dinitrogen, a colourless and odourless diatomic gas with the formula N2, is formed when two atoms of the element join together at STP. Dinitrogen is the most abundant uncombined element, accounting for around
6 min read
Ammonia |Structure, Properties, Preparation, UsesAmmonia (NHâ) is a colorless gas with a sharp, pungent odor. It is a compound of nitrogen and hydrogen and plays a crucial role in both the industrial sector and biological processes. Let's learn about ammonia in detail, including its structure, properties and uses. AmmoniaAmmonia is nitrogen and hy
7 min read
Oxides of NitrogenNitrogen combines with oxygen to generate nitrogen oxides in a variety of forms. Its oxides have distinct oxidation states, ranging from +1 to +5. Nitrogen oxides with a greater oxidation state are more acidic than those with a lower oxidation state. Nitrogen Oxides are a combination of gases that i
9 min read
Allotropes of PhosphorusDespite the fact that people have been using the periodic table with phosphorus (P) in it for thousands of years, it was not until 1669 that it was isolated and named by a chemist named Brand. Phosphorus is an element that cannot be found naturally in our environment. It is highly reactive. Phosphor
5 min read
Phosphine - Structure, Preparation, Properties, UsesThe final electron of a P block element enters one of the three p-orbitals of the shell in which it is found. There are six groups of p-block elements since a p-subshell has three degenerate p-orbitals, each of which may hold two electrons. Because of their tendency to lose an electron, P block elem
5 min read
Phosphorus Halides - Structure, Properties, Uses, EffectsPhosphorus is required for life, mostly through phosphates, which are molecules that contain the phosphate ion. Phosphates are found in DNA, RNA, ATP, and phospholipids, which are all complex molecules that are required by cells. Phosphate was first found in human urine, and bone ash was a significa
8 min read
Oxoacids of PhosphorusOxoacids are acids that contain oxygen. Phosphorus is one such element that can be used to create a variety of oxoacids. H3PO4, H3PO3, and other common oxyacids The phosphorus atom is tetrahedrally surrounded by other atoms in phosphorus oxoacids. In general, it is obvious that these acids have at l
6 min read
ChalcogensChalcogens are the Group 16 elements of the modern periodic table consisting of 5 elements oxygen, sulphur, selenium, tellurium and polonium. The elements in this group are also known as chalcogens or ore-forming elements because many elements can be extracted from sulphide or oxide ores. The chalco
9 min read
Dioxygen - Definition, Properties, Preparation, UsesOxygen is a member of the periodic table's chalcogen group, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements and other compounds. Oxygen is the most abundant element on Earth, and it is the third-most abundant element in the universe after hydrogen and
5 min read
Simple Oxides - Definition, Types, ExamplesOxides are binary chemicals generated when oxygen reacts with other elements. In nature, oxygen is extremely reactive. They create oxides when they react with metals and nonmetals. Based on their acid-base properties, oxides are classified as neutral, amphoteric, basic, or acidic. An acidic oxide is
5 min read
Ozone - Preparation, Properties, Uses, EffectsOzone is too reactive to stay in the atmosphere at sea level for long. It is formed from atmospheric oxygen in the presence of sunlight at a height of about 20 kilometres. This ozone layer shields the earth's surface from an excess of ultraviolet (UV) radiation. It is an unstable, blue, diamagnetic
7 min read
Allotropes of SulphurThe tenth most prevalent element in the universe is sulphur. It can also be found in the form of sulphide in a variety of meteorites. The existence of a sulphur element in molten, gaseous, and solid states gives the Jupiter moon lo its unusual colours. Sulphur is the sixth most prevalent element on
7 min read
Sulphur Dioxide - Structure, Preparation, Properties, UsesThe p-block, which spans groups 13 to 18, is located on the right side of the normal periodic table. Their electrical configuration is ns2 np1â6 in general. Despite being the first element in group 18, helium is not part of the p-block. Except for the first row, each row in the table has six p-eleme
8 min read
Oxoacids of SulphurOxoacids are oxygen-containing acids. Many oxoacids, such as H2SO4, H2SO3, and others, are known to be formed by sulphur. When sulphur is coordinated to oxygen, it forms a tetrahedral structure in oxoacids. Sulfur oxoacids are sulphur, oxygen, and hydrogen-containing chemical compounds. Sulfuric aci
6 min read
Sulfuric Acid - H2SO4Sulfuric Acid or Sulphuric Acid is a mineral acid consisting of one Sulfur, four Oxygen, and two Hydrogen atoms. The chemical or molecular formula of Sulfuric Acid is H2SO4. Sulfuric Acid is one most important commercially used chemicals. It is also known as Mattling acid or Hydrogen Sulfate or Vitr
8 min read
Group 17 Elements: The HalogensThe Halogens are the elements in the periodic table of Group 17 of the periodic table. Fluorine, chlorine, bromine, and iodine are examples of reactive nonmetals. Halogens are nonmetals that are extremely reactive. These elements have a lot in common in terms of properties. Group 17 elements are kno
8 min read
Chlorine (Cl)Chlorine is a chemical element that is represented by the symbol Cl. Chlorine is present in the 17th Group (Halogen Group) and 3rd Period of the Periodic table. Chlorine is the second lightest halogen that lies between Fluorine and Bromine in the halogen group. Chlorine is a yellow-green, pungent-sm
6 min read
Hydrogen Chloride - Definition, Preparation, Properties, UsesAs a hydrogen halide, the compound hydrogen chloride has the chemical formula HCl. It is a colourless gas at ambient temperature that emits white fumes of hydrochloric acid when it comes into contact with air-water vapour. In technology and industry, hydrogen chloride gas and hydrochloric acid are c
7 min read
Oxoacids of Halogens - Definition, Properties, StructureThe elements of Group 17 from top to bottom are fluorine, chlorine, bromine, iodine, and astatine. They are referred to as halogens because they create salt. This group's members are very similar to one another. They have a consistent pattern of physical and chemical features. The valence shell of e
7 min read
Interhalogen CompoundsThe p-block elements are known to be those elements in which the electron enters in one of the three orbitals of the p-block. There are 6 groups of p-block elements. The properties of p-block elements are that they are shiny and are good conductor of heat and electricity since they have free electro
6 min read
Group 18 Elements - Characteristics of Noble GasesThe group's members have eight electrons in their outermost orbit (except helium which has two electrons). As a result, they have a stable configuration. Group 18 elements are gases that are chemically unreactive, meaning they do not form many compounds. Be a result, the elements are referred to as
7 min read
Chapter 8: d- and f-Block Elements
Position of Elements in the Periodic TableThe elements in the middle of the periodic table, from Group 3 to 12, are referred to as d-block elements. The name d-block comes from the fact that the final electron enters the d-orbital of the penultimate shell. These are frequently referred to as transition elements because their properties fall
6 min read
Electronic Configuration of the d-block ElementsElectronic Configuration of the d-block elements are those that can be found in the contemporary periodic table from the third to the twelfth groups. These elements' valence electrons are located in the d orbital. d-block elements are sometimes known as transition elements or transition metals. The
7 min read
General Properties of Transition Elements (d-block)Elements with partially filled d orbitals are known as transition elements (sometimes known as transition metals). Transition elements are defined by IUPAC as elements with a partially full d subshell or elements capable of forming stable cations with an incompletely filled d orbital. In general, an
7 min read
Lanthanides - Definition, Configuration, PropertiesLanthanides are the contemporary periodic table's rare earth elements, with atomic numbers ranging from 58 to 71 after Lanthanum. Rare earth metals are so-called because these elements are extremely rare (3 Ã 10-4 % of the Earth's crust). As lanthanide orthophosphates, they are accessible in 'monazi
8 min read
Actinides - Definition, Properties, Formation, UsesThe d and f block mainly contains elements that include groups 3-12. The f block has elements in which 4f and 5f are progressively filled. These elements are placed below the periodic table in a separate table. The d and f block elements are majorly known as transition or inner transition elements.
9 min read
Some Applications of d and f-block ElementsTransition metals are typically characterized as elements with or capable of forming partially filled 'd' orbitals. Transition elements are d-block elements in groupings of three to eleven. Inner transition metals, which include the lanthanides and actinides, are another name for the f block element
6 min read
Chapter 9: Coordination Compounds