Check whether it is possible to make both arrays equal by modifying a single element
Last Updated : 05 May, 2025
Given two sequences of integers ‘A’ and ‘B’, and an integer ‘k’. The task is to check if we can make both sequences equal by modifying any one element from the sequence A in the following way:
We can add any number from the range [-k, k] to any element of A. This operation must only be performed once. Print Yes if it is possible or No otherwise.
Examples:
Input: K = 2, A[] = {1, 2, 3}, B[] = {3, 2, 1}
Output: Yes
0 can be added to any element and both the sequences will be equal.
Input: K = 4, A[] = {1, 5}, B[] = {1, 1}
Output: Yes
-4 can be added to 5 then the sequence A becomes {1, 1} which is equal to the sequence B.
Approach: Notice that to make both the sequence equal with just one move there has to be only one mismatching element in both the sequences and the absolute difference between them must be less than or equal to ‘k’.
- Sort both the arrays and look for the mismatching elements.
- If there are more than one mismatch elements then print ‘No’
- Else, find the absolute difference between the elements.
- If the difference <= k then print ‘Yes’ else print ‘No’.
Below is the implementation of the above approach:
C++ // C++ implementation of the above approach #include<bits/stdc++.h> using namespace std; // Function to check if both // sequences can be made equal static bool check(int n, int k, int *a, int *b) { // Sorting both the arrays sort(a,a+n); sort(b,b+n); // Flag to tell if there are // more than one mismatch bool fl = false; // To stores the index // of mismatched element int ind = -1; for (int i = 0; i < n; i++) { if (a[i] != b[i]) { // If there is more than one // mismatch then return False if (fl == true) { return false; } fl = true; ind = i; } } // If there is no mismatch or the // difference between the // mismatching elements is <= k // then return true if (ind == -1 | abs(a[ind] - b[ind]) <= k) { return true; } return false; } // Driver code int main() { int n = 2, k = 4; int a[] = {1, 5}; int b[] = {1, 1}; if (check(n, k, a, b)) { printf("Yes"); } else { printf("No"); } return 0; } // This code is contributed by mits
Java // Java implementation of the above approach import java.util.Arrays; class GFG { // Function to check if both // sequences can be made equal static boolean check(int n, int k, int[] a, int[] b) { // Sorting both the arrays Arrays.sort(a); Arrays.sort(b); // Flag to tell if there are // more than one mismatch boolean fl = false; // To stores the index // of mismatched element int ind = -1; for (int i = 0; i < n; i++) { if (a[i] != b[i]) { // If there is more than one // mismatch then return False if (fl == true) { return false; } fl = true; ind = i; } } // If there is no mismatch or the // difference between the // mismatching elements is <= k // then return true if (ind == -1 | Math.abs(a[ind] - b[ind]) <= k) { return true; } return false; } // Driver code public static void main(String[] args) { int n = 2, k = 4; int[] a = {1, 5}; int b[] = {1, 1}; if (check(n, k, a, b)) { System.out.println("Yes"); } else { System.out.println("No"); } } } // This code is contributed by 29AjayKumar
Python # Python implementation of the above approach # Function to check if both # sequences can be made equal def check(n, k, a, b): # Sorting both the arrays a.sort() b.sort() # Flag to tell if there are # more than one mismatch fl = False # To stores the index # of mismatched element ind = -1 for i in range(n): if(a[i] != b[i]): # If there is more than one # mismatch then return False if(fl == True): return False fl = True ind = i # If there is no mismatch or the # difference between the # mismatching elements is <= k # then return true if(ind == -1 or abs(a[ind]-b[ind]) <= k): return True return False n, k = 2, 4 a =[1, 5] b =[1, 1] if(check(n, k, a, b)): print("Yes") else: print("No")
C# // C# implementation of the above approach using System; class GFG { // Function to check if both // sequences can be made equal static bool check(int n, int k, int[] a, int[] b) { // Sorting both the arrays Array.Sort(a); Array.Sort(b); // Flag to tell if there are // more than one mismatch bool fl = false; // To stores the index // of mismatched element int ind = -1; for (int i = 0; i < n; i++) { if (a[i] != b[i]) { // If there is more than one // mismatch then return False if (fl == true) { return false; } fl = true; ind = i; } } // If there is no mismatch or the // difference between the // mismatching elements is <= k // then return true if (ind == -1 | Math.Abs(a[ind] - b[ind]) <= k) { return true; } return false; } // Driver code public static void Main() { int n = 2, k = 4; int[] a = {1, 5}; int[] b = {1, 1}; if (check(n, k, a, b)) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } } // This code is contributed by Rajput-Ji
JavaScript <script> // Javascript Implementation of above approach. // Function to check if both // sequences can be made equal function check(n, k, a, b) { // Sorting both the arrays a.sort(); b.sort(); // Flag to tell if there are // more than one mismatch let fl = false; // To stores the index // of mismatched element let ind = -1; for (let i = 0; i < n; i++) { if (a[i] != b[i]) { // If there is more than one // mismatch then return False if (fl == true) { return false; } fl = true; ind = i; } } // If there is no mismatch or the // difference between the // mismatching elements is <= k // then return true if (ind == -1 | Math.abs(a[ind] - b[ind]) <= k) { return true; } return false; } // Driver code let n = 2, k = 4; let a = [1, 5]; let b = [1, 1]; if (check(n, k, a, b)) { document.write("Yes"); } else { document.write("No"); } </script>
PHP <?php // PHP implementation of the // above approach // Function to check if both // sequences can be made equal function check($n, $k, &$a, &$b) { // Sorting both the arrays sort($a); sort($b); // Flag to tell if there are // more than one mismatch $fl = False; // To stores the index // of mismatched element $ind = -1; for ($i = 0; $i < $n; $i++) { if($a[$i] != $b[$i]) { // If there is more than one // mismatch then return False if($fl == True) return False; $fl = True; $ind = $i; } } // If there is no mismatch or the // difference between the // mismatching elements is <= k // then return true if($ind == -1 || abs($a[$ind] - $b[$ind]) <= $k) return True; return False; } // Driver Code $n = 2; $k = 4; $a = array(1, 5); $b = array(1, 1); if(check($n, $k, $a, $b)) echo "Yes"; else echo "No"; // This code is contributed by ita_c ?>
Complexity Analysis:
- Time Complexity: O(nlog(n))
- Auxiliary Space: O(1)
Approach: Hash Map
Steps:
- Initialize an empty hash map, freqMap.
- Iterate over each element in sequence A and update the frequencies of elements in freqMap.
- Iterate over each element in sequence B and decrement the frequencies of elements in freqMap.
- If all frequencies in freqMap are 0 or within the range [-k, k], print “Yes”.
- Otherwise, print “No”.
Below is the implementation of the above approach:
C++ // C++ implementation of the above approach #include <iostream> #include <unordered_map> #include <vector> using namespace std; bool makeSequencesEqual(int k, const vector<int>& A, const vector<int>& B) { unordered_map<int, int> freqMap; // Update frequencies for sequence A for (int num : A) { freqMap[num]++; } // Decrement frequencies for sequence B for (int num : B) { freqMap[num]--; } for (const auto& pair : freqMap) { int num = pair.first; int freq = pair.second; // Check if frequencies are within the range [-k, k] if (freq != 0 && abs(freq) > k) { return false; } } return true; } // Driver Code int main() { int k = 2; vector<int> A = { 1, 2, 3 }; vector<int> B = { 3, 2, 1 }; // Check if sequences can be made equal if (makeSequencesEqual(k, A, B)) { cout << "Yes" << endl; } else { cout << "No" << endl; } return 0; }
Java // Java implementation of the above approach import java.util.HashMap; import java.util.Map; import java.util.ArrayList; import java.util.List; public class GFG { public static boolean makeSequencesEqual(int k, List<Integer> A, List<Integer> B) { Map<Integer, Integer> freqMap = new HashMap<>(); // Update frequencies for sequence A for (int num : A) { freqMap.put(num, freqMap.getOrDefault(num, 0) + 1); } // Decrement frequencies for sequence B for (int num : B) { freqMap.put(num, freqMap.getOrDefault(num, 0) - 1); } for (Map.Entry<Integer, Integer> entry : freqMap.entrySet()) { int num = entry.getKey(); int freq = entry.getValue(); // Check if frequencies are within the range [-k, k] if (freq != 0 && Math.abs(freq) > k) { return false; } } return true; } // Driver Code public static void main(String[] args) { int k = 2; List<Integer> A = new ArrayList<>(); A.add(1); A.add(2); A.add(3); List<Integer> B = new ArrayList<>(); B.add(3); B.add(2); B.add(1); // Check if sequences can be made equal if (makeSequencesEqual(k, A, B)) { System.out.println("Yes"); } else { System.out.println("No"); } } } // This code is contributed by Vaibhav Nandan
Python def make_sequences_equal(k, A, B): freq_map = {} # Update frequencies for sequence A for num in A: freq_map[num] = freq_map.get(num, 0) + 1 # Decrement frequencies for sequence B for num in B: freq_map[num] = freq_map.get(num, 0) - 1 for num, freq in freq_map.items(): # Check if frequencies are within the range [-k, k] if freq != 0 and abs(freq) > k: return False return True # Driver Code if __name__ == "__main__": k = 2 A = [1, 2, 3] B = [3, 2, 1] # Check if sequences can be made equal if make_sequences_equal(k, A, B): print("Yes") else: print("No")
C# using System; using System.Collections.Generic; class GFG { static bool MakeSequencesEqual(int k, List<int> A, List<int> B) { Dictionary<int, int> freqMap = new Dictionary<int, int>(); // Update frequencies for sequence A foreach(int num in A) { if (freqMap.ContainsKey(num)) freqMap[num]++; else freqMap[num] = 1; } // Decrement frequencies for sequence B foreach(int num in B) { if (freqMap.ContainsKey(num)) freqMap[num]--; else freqMap[num] = -1; } foreach(KeyValuePair<int, int> pair in freqMap) { int num = pair.Key; int freq = pair.Value; // Check if frequencies are within the range // [-k, k] if (freq != 0 && Math.Abs(freq) > k) { return false; } } return true; } // Driver Code static void Main() { int k = 2; List<int> A = new List<int>() { 1, 2, 3 }; List<int> B = new List<int>() { 3, 2, 1 }; // Check if sequences can be made equal if (MakeSequencesEqual(k, A, B)) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } }
JavaScript function makeSequencesEqual(k, A, B) { const freqMap = new Map(); // Update frequencies for sequence A for (let num of A) { freqMap.set(num, (freqMap.get(num) || 0) + 1); } // Decrement frequencies for sequence B for (let num of B) { freqMap.set(num, (freqMap.get(num) || 0) - 1); } for (let [num, freq] of freqMap) { // Check if frequencies are within the range [-k, k] if (freq !== 0 && Math.abs(freq) > k) { return false; } } return true; } // Driver Code const k = 2; const A = [1, 2, 3]; const B = [3, 2, 1]; // Check if sequences can be made equal if (makeSequencesEqual(k, A, B)) { console.log("Yes"); } else { console.log("No"); }
Time Complexity: O(n), where n is the total number of elements in sequences A and B.
Auxiliary Space: O(m), where m is the number of unique elements in sequences A and B.
Similar Reads
Check if it is possible to make array equal by doubling or tripling
Given an array of n elements.You can double or triple the elements in the array any number of times. After all the operations check whether it is possible to make all elements in the array equal. Examples : Input : A[] = {75, 150, 75, 50} Output : Yes Explanation : Here, 75 should be doubled twice a
6 min read
Find if it is possible to make all elements of an array equal by the given operations
Given an array arr[], the task is to make all the array elements equal with the given operation. In a single operation, any element of the array can be either multiplied by 3 or by 5 any number of times. If it's possible to make all the array elements equal with the given operation then print Yes el
7 min read
Check if Arrays can be made equal by Replacing elements with their number of Digits
Given two arrays A[] and B[] of length N, the task is to check if both arrays can be made equal by performing the following operation at most K times: Choose any index i and either change Ai to the number of digits Ai have or change Bi to the number of digits Bi have. Examples: Input: N = 4, K = 1,
10 min read
Check if it is possible to make all strings of A[] equal to B[] using given operations
Consider two arrays, A[] and B[], each containing N strings. These strings are composed solely of digits ranging from 0 to 9. Then your task is to output YES or NO, by following that all the strings of A[] can be made equal to B[] for each i (1 <= i <= N) in at most K cost. The following opera
9 min read
Check if Array Elemnts can be Made Equal with Given Operations
Given an array arr[] consisting of N integers and following are the three operations that can be performed using any external number X. Add X to an array element once.Subtract X from an array element once.Perform no operation on the array element.Note : Only one operation can be performed on a numbe
6 min read
Count of operations to make all elements of array a[] equal to its min element by performing a[i] â b[i]
Given two array a[] and b[] of size N, the task is to print the count of operations required to make all the elements of array a[i] equal to its minimum element by performing a[i] - b[i] where its always a[i] >= b[i]. If it is not possible then return -1.Example: Input: a[] = {5, 7, 10, 5, 15} b[
9 min read
Check whether two strings can be made equal by increasing prefixes
In this problem we have to check. whether two strings can be made equal by increasing the ASCII value of characters of the prefix of first string. We can increase different prefixes multiple times. The strings consists of only lowercase alphabets and does not contain any special characters . Example
9 min read
Minimum changes required to make all element in an array equal
Given an array of length N, the task is to find minimum operation required to make all elements in the array equal. Operation is as follows: Replace the value of one element of the array by one of its adjacent elements. Examples: Input: N = 4, arr[] = {2, 3, 3, 4} Output: 2 Explanation: Replace 2 an
5 min read
Minimize operations to make both arrays equal by decrementing a value from either or both
Given two arrays A[] and B[] having N integers, the task is to find the minimum operations required to make all the elements of both the array equal where at each operation, the following can be done: Decrement the value of A[i] by 1 where i lies in the range [0, N).Decrement the value of B[i] by 1
8 min read
Minimum Bitwise AND operations to make any two array elements equal
Given an array of integers of size 'n' and an integer 'k', We can perform the Bitwise AND operation between any array element and 'k' any number of times. The task is to print the minimum number of such operations required to make any two elements of the array equal. If it is not possible to make an
10 min read