Find All Occurrences of Subarray in Array
Last Updated : 26 Nov, 2024
Given two arrays a[] and b[], the task is to find all starting indices of b[] as a subarray in a[].
Examples:
Input: a[] = [2, 3, 0, 3, 0, 3, 0], b[] = [3, 0, 3, 0]
Output: [1, 3]
Explanation: The subarray a[1…4] = b[] and subarray a[3…6] = b[].
Input : a[] = [1, 2, 3, 4, 5], b[] = [2, 5, 6]
Output: []
Explanation: No subarray of a[] matches with b[].
[Naive Approach] Comparing All Subarrays – O(n*m) Time and O(1) Space
The idea is to check for all possible indices in a[] as starting index of subarray b[]. For each index, compare the subarray of a[] with b[] using a nested loop. If all the elements match, store the starting index in result. If any element does not match, break and check for next starting index.
C++ // C++ Program to search for subarray by matching // with every possible subarray #include <iostream> #include <vector> using namespace std; vector<int> search(vector<int> &a, vector<int> &b) { int n = a.size(), m = b.size(); vector<int> res; // Iterate over all possible starting indices for(int i = 0; i < n - m + 1; i++) { bool isSame = true; for(int j = 0; j < m; j++) { // If any character does not match, break // and begin from the next starting index if(a[i + j] != b[j]) { isSame = false; break; } } // If all characters are matched, store the // starting index if(isSame) res.push_back(i); } return res; } int main() { vector<int> a = {2, 3, 0, 3, 0, 3, 0}; vector<int> b = {3, 0, 3, 0}; vector<int> res = search(a, b); for(int idx: res) cout << idx << " "; }
Java // Java Program to search for subarray by matching // with every possible subarray import java.util.ArrayList; import java.util.List; class GfG { static List<Integer> search(int[] a, int[] b) { int n = a.length, m = b.length; List<Integer> res = new ArrayList<>(); // Iterate over all possible starting indices for (int i = 0; i < n - m + 1; i++) { boolean isSame = true; // If any character does not match, break // and begin from the next starting index for (int j = 0; j < m; j++) { if (a[i + j] != b[j]) { isSame = false; break; } } // If all characters are matched, store // the starting index if (isSame) res.add(i); } return res; } public static void main(String[] args) { int[] a = {2, 3, 0, 3, 0, 3, 0}; int[] b = {3, 0, 3, 0}; List<Integer> res = search(a, b); for (int idx : res) System.out.print(idx + " "); } }
Python # Python Program to search for subarray by matching # with every possible subarray def search(a, b): n = len(a) m = len(b) res = [] # Iterate over all possible starting indices for i in range(n - m + 1): isSame = True for j in range(m): # If any character does not match, break # and begin from the next starting index if a[i + j] != b[j]: isSame = False break # If all characters are matched, store the starting index if isSame: res.append(i) return res if __name__ == "__main__": a = [2, 3, 0, 3, 0, 3, 0] b = [3, 0, 3, 0] res = search(a, b) for idx in res: print(idx, end=" ")
C# // C# Program to search for subarray by matching // with every possible subarray using System; using System.Collections.Generic; class GfG { static List<int> Search(int[] a, int[] b) { int n = a.Length, m = b.Length; List<int> res = new List<int>(); // Iterate over all possible starting indices for (int i = 0; i < n - m + 1; i++) { bool isSame = true; for (int j = 0; j < m; j++) { // If any character does not match, break // and begin from the next starting index if (a[i + j] != b[j]) { isSame = false; break; } } // If all characters are matched, store the starting index if (isSame) res.Add(i); } return res; } static void Main() { int[] a = { 2, 3, 0, 3, 0, 3, 0 }; int[] b = { 3, 0, 3, 0 }; List<int> res = Search(a, b); foreach (int idx in res) { Console.Write(idx + " "); } } }
JavaScript // JavaScript Program to search for subarray by matching // with every possible subarray function search(a, b) { let n = a.length, m = b.length; let res = []; // Iterate over all possible starting indices for (let i = 0; i < n - m + 1; i++) { let isSame = true; for (let j = 0; j < m; j++) { // If any character does not match, break // and begin from the next starting index if (a[i + j] !== b[j]) { isSame = false; break; } } // If all characters are matched, store the starting index if (isSame) res.push(i); } return res; } // Driver code let a = [2, 3, 0, 3, 0, 3, 0]; let b = [3, 0, 3, 0]; let res = search(a, b); for (let idx of res) { console.log(idx + " "); }
Time Complexity: O(n*m), where n and m are the sizes of the arrays a[] and b[], respectively.
Space Complexity: O(1) as we are not using any additional space to store the arrays or any other variables.
[Expected Approach] Using KMP Algorithm – O(n+m) Time and O(m) Space
The idea is to use KMP Algorithm with a[] as the text and b[] as the pattern. So, instead of comparing characters, we can compare numbers of the array to construct the lps[] array and find all occurrences of b[] in a[].
C++ // C++ Program to search for subarray using KMP Algorithm #include <iostream> #include <vector> using namespace std; void constructLps(vector<int> &pat, vector<int> &lps) { // len stores the length of longest prefix which // is also a suffix for the previous index int len = 0; // lps[0] is always 0 lps[0] = 0; int i = 1; while (i < pat.size()) { // If numbers match, increment the size of lps if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } // If there is a mismatch else { if (len != 0) { // Update len to the previous lps value // to avoid reduntant comparisons len = lps[len - 1]; } else { // If no matching prefix found, set lps[i] to 0 lps[i] = 0; i++; } } } } vector<int> search(vector<int> &a, vector<int> &b) { int n = a.size(); int m = b.size(); vector<int> lps(m); vector<int> res; constructLps(b, lps); // Pointers i and j, for traversing a[] and b[] int i = 0; int j = 0; while (i < n) { // If elements match, move both pointers forward if (a[i] == b[j]) { i++; j++; // If all elements of b[] are matched // store the start index in result if (j == m) { res.push_back(i - j); // Use LPS of previous index to // skip unnecessary comparisons j = lps[j - 1]; } } // If there is a mismatch else { // Use lps value of previous index // to avoid redundant comparisons if (j != 0) j = lps[j - 1]; else i++; } } return res; } int main() { vector<int> a = {2, 3, 0, 3, 0, 3, 0}; vector<int> b = {3, 0, 3, 0}; vector<int> res = search(a, b); for(int idx: res) cout << idx << " "; }
Java // Java Program to search for subarray using KMP Algorithm import java.util.ArrayList; import java.util.List; class GfG { // Function to construct LPS array static void constructLps(int[] pat, int[] lps) { // len stores the length of longest prefix which // is also a suffix for the previous index int len = 0; // lps[0] is always 0 lps[0] = 0; int i = 1; while (i < pat.length) { // If numbers match, increment the size of lps if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } // If there is a mismatch else { if (len != 0) { // Update len to the previous lps value // to avoid redundant comparisons len = lps[len - 1]; } else { // If no matching prefix found, set lps[i] to 0 lps[i] = 0; i++; } } } } // Function to search for the subarray using KMP algorithm static List<Integer> search(int[] a, int[] b) { int n = a.length; int m = b.length; int[] lps = new int[m]; List<Integer> res = new ArrayList<>(); constructLps(b, lps); // Pointers i and j, for traversing a[] and b[] int i = 0; int j = 0; while (i < n) { // If elements match, move both pointers forward if (a[i] == b[j]) { i++; j++; // If all elements of b[] are matched // store the start index in result if (j == m) { res.add(i - j); // Use LPS of previous index to // skip unnecessary comparisons j = lps[j - 1]; } } // If there is a mismatch else { // Use lps value of previous index // to avoid redundant comparisons if (j != 0) j = lps[j - 1]; else i++; } } return res; } public static void main(String[] args) { int[] a = {2, 3, 0, 3, 0, 3, 0}; int[] b = {3, 0, 3, 0}; List<Integer> res = search(a, b); for (int idx : res) System.out.print(idx + " "); } }
Python # Python Program to search for subarray using KMP Algorithm def constructLps(pat, lps): # len stores the length of longest prefix which # is also a suffix for the previous index length = 0 # lps[0] is always 0 lps[0] = 0 i = 1 while i < len(pat): # If numbers match, increment the size of lps if pat[i] == pat[length]: length += 1 lps[i] = length i += 1 # If there is a mismatch else: if length != 0: # Update length to the previous lps value # to avoid redundant comparisons length = lps[length - 1] else: # If no matching prefix found, set lps[i] to 0 lps[i] = 0 i += 1 def search(a, b): n = len(a) m = len(b) lps = [0] * m res = [] constructLps(b, lps) # Pointers i and j, for traversing a[] and b[] i = 0 j = 0 while i < n: # If elements match, move both pointers forward if a[i] == b[j]: i += 1 j += 1 # If all elements of b[] are matched # store the start index in result if j == m: res.append(i - j) # Use LPS of previous index to # skip unnecessary comparisons j = lps[j - 1] else: # If there is a mismatch # Use lps value of previous index # to avoid redundant comparisons if j != 0: j = lps[j - 1] else: i += 1 return res if __name__ == "__main__": a = [2, 3, 0, 3, 0, 3, 0] b = [3, 0, 3, 0] res = search(a, b) for idx in res: print(idx, end=" ")
C# // C# Program to search for subarray using KMP Algorithm using System; using System.Collections.Generic; class GfG { // Function to construct the LPS array (Longest Prefix Suffix) static void ConstructLps(int[] pat, int[] lps) { // len stores the length of the longest prefix which // is also a suffix for the previous index int len = 0; // lps[0] is always 0 lps[0] = 0; int i = 1; while (i < pat.Length) { // If numbers match, increment the size of lps if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } // If there is a mismatch else { if (len != 0) { // Update len to the previous lps value // to avoid redundant comparisons len = lps[len - 1]; } else { // If no matching prefix found, set lps[i] to 0 lps[i] = 0; i++; } } } } // Function to search for the subarray static List<int> Search(int[] a, int[] b) { int n = a.Length; int m = b.Length; int[] lps = new int[m]; List<int> res = new List<int>(); ConstructLps(b, lps); // Pointers i and j, for traversing a[] and b[] int i = 0; int j = 0; while (i < n) { // If elements match, move both pointers forward if (a[i] == b[j]) { i++; j++; // If all elements of b[] are matched // store the start index in result if (j == m) { res.Add(i - j); // Use LPS of previous index to // skip unnecessary comparisons j = lps[j - 1]; } } // If there is a mismatch else { // Use lps value of previous index // to avoid redundant comparisons if (j != 0) j = lps[j - 1]; else i++; } } // Convert the List<int> to an int[] before returning return res; } static void Main() { int[] a = { 2, 3, 0, 3, 0, 3, 0 }; int[] b = { 3, 0, 3, 0 }; List<int> res = Search(a, b); foreach (int idx in res) { Console.Write(idx + " "); } } }
JavaScript // JavaScript Program to search for subarray using KMP Algorithm function constructLps(pat, lps) { // len stores the length of longest prefix which // is also a suffix for the previous index let len = 0; // lps[0] is always 0 lps[0] = 0; let i = 1; while (i < pat.length) { // If numbers match, increment the size of lps if (pat[i] === pat[len]) { len++; lps[i] = len; i++; } // If there is a mismatch else { if (len !== 0) { // Update len to the previous lps value // to avoid redundant comparisons len = lps[len - 1]; } else { // If no matching prefix found, set lps[i] to 0 lps[i] = 0; i++; } } } } function search(a, b) { let n = a.length; let m = b.length; let lps = new Array(m); let res = []; constructLps(b, lps); // Pointers i and j, for traversing a[] and b[] let i = 0; let j = 0; while (i < n) { // If elements match, move both pointers forward if (a[i] === b[j]) { i++; j++; // If all elements of b[] are matched // store the start index in result if (j === m) { res.push(i - j); // Use LPS of previous index to // skip unnecessary comparisons j = lps[j - 1]; } } // If there is a mismatch else { // Use lps value of previous index // to avoid redundant comparisons if (j !== 0) j = lps[j - 1]; else i++; } } return res; } // Driver Code let a = [2, 3, 0, 3, 0, 3, 0]; let b = [3, 0, 3, 0]; let res = search(a, b); for (let idx of res) { console.log(idx + " "); }
Time Complexity: O(n+m), where n and m are the sizes of the arrays a[] and b[], respectively.
Auxiliary Space: O(m), for lps[] array.
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
Remove All Occurrences of an Element in an Array
Given an integer array arr[] and an integer ele the task is to the remove all occurrences of ele from arr[] in-place and return the number of elements which are not equal to ele. If there are k number of elements which are not equal to ele then the input array arr[] should be modified such that the
6 min read
Find the Kth occurrence of an element in a sorted Array
Given a sorted array arr[] of size N, an integer X, and a positive integer K, the task is to find the index of Kth occurrence of X in the given array. Examples: Input: N = 10, arr[] = [1, 2, 3, 3, 4, 5, 5, 5, 5, 5], X = 5, K = 2Output: Starting index of the array is '0' Second occurrence of 5 is at
15+ min read
Count Subarrays of 1 in Binary Array
Given an array arr[] of size N, the array contains only 1s and 0s, and the task is to return the count of the total number of subarrays where all the elements of the subarrays are 1. Examples: Input: N = 4, arr[] = {1, 1, 1, 0}Output: 6Explanation: Subarrays of 1 will look like the following: [1], [
13 min read
Product of all Subarrays of an Array
Given an array of integers arr of size N, the task is to print products of all subarrays of the array. Examples: Input: arr[] = {2, 4} Output: 64 Here, subarrays are [2], [2, 4], [4] Products are 2, 8, 4 Product of all Subarrays = 64 Input : arr[] = {10, 3, 7} Output : 27783000 Here, subarrays are [
7 min read
Product of all Subarrays of an Array | Set 2
Given an array arr[] of integers of size N, the task is to find the products of all subarrays of the array.Examples: Input: arr[] = {2, 4} Output: 64 Explanation: Here, subarrays are {2}, {2, 4}, and {4}. Products of each subarray are 2, 8, 4. Product of all Subarrays = 64Input: arr[] = {1, 2, 3} Ou
5 min read
Count number of occurrences (or frequency) in a sorted array
Given a sorted array arr[] and an integer target, the task is to find the number of occurrences of target in given array. Examples: Input: arr[] = [1, 1, 2, 2, 2, 2, 3], target = 2Output: 4Explanation: 2 occurs 4 times in the given array. Input: arr[] = [1, 1, 2, 2, 2, 2, 3], target = 4Output: 0Expl
9 min read
Count of Subarrays not containing all elements of another Array
Given two arrays nums[] of size N and target[]. The task is to find the number of non-empty subarrays of nums[] that do not contain every number in the target[]. As the answer can be very large, calculate the result modulo 109+7. Examples: Input: nums = {1, 2, 2}, target = {1, 2}Output: 4Explanation
12 min read
Smallest subarray with all occurrences of a most frequent element
Given an array, A. Let x be an element in the array. x has the maximum frequency in the array. Find the smallest subsegment of the array which also has x as the maximum frequency element. Examples: Input : arr[] = {4, 1, 1, 2, 2, 1, 3, 3} Output : 1, 1, 2, 2, 1 The most frequent element is 1. The sm
8 min read
Find sum of count of duplicate numbers in all subarrays of given array
Given an array arr[] of size N. The task it to find the sum of count of duplicate numbers in all subarrays of given array arr[]. For example array {1, 2, 3, 2, 3, 2} has two duplicate elements (i.e, 2 and 3 come more than one time in the array). Examples:Input: N = 2, arr = {3,3}Output: 1Explanation
6 min read
Product of all non repeating Subarrays of an Array
Given an array containing distinct integers arr[] of size N, the task is to print the product of all non-repeating subarrays of the array. Examples: Input: arr[] = {2, 4} Output: 64 Explanation: The possible subarrays for the given array are {2}, {2, 4}, {4} The products are 2, 8, 4 respectively. Th
5 min read