Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Practice on BST
  • MCQs on BST
  • BST Tutorial
  • BST Insertion
  • BST Traversals
  • BST Searching
  • BST Deletion
  • Check BST
  • Balance a BST
  • Self-Balancing BST
  • AVL Tree
  • Red-Black Tree
  • Splay Tree
  • BST Application
  • BST Advantage
Open In App
Next Article:
Check if two BSTs contain same set of elements
Next article icon

Check if two BSTs contain same set of elements

Last Updated : 22 Oct, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two Binary Search Trees consisting of unique positive elements, the task is to check whether the two BSTs contain the same set of elements or not. The structure of the two given BSTs can be different. 

Example:

Input:

check-if-two-bsts-contain-same-set-of-elements


Output: True
Explanation: The above two BSTs contains same set of elements {5, 10, 12, 15, 20, 25}

The simple idea is to traverse the first tree. For each node, check if a node exists with the same value in the second tree. If it exists, then set the node value of the second tree to -1 (to mark the node as visited) and recursively check for the left and right subtree. Otherwise, return false. Finally, check if all the nodes of the second tree have a value of -1.

Time Complexity: O( n * n ), where n is the number of nodes in the BST. 
Auxiliary Space: O( h1 + h2 ), where h1 and h2 are the heights of the two trees.

Table of Content

  • [Expected Approach - 1] Using Recursion and hashSet - O(n) Time and O(n) Space
  • [Expected Approach - 2] Using In-Order Traversal and Array - O(n) Time and O(n) Space

[Expected Approach - 1] Using Recursion and hash set - O(n) Time and O(n) Space

The idea is to store the node values of the first BST in a hashSet. Then, traverse the second BST and check for every node if its value exists in the hashSet. If it exists, then remove the value from the hash set and recursively check for left and right subtree. Otherwise, return false. Finally check if the hash set is empty or not.

Below is the implementation of the above approach: 

C++
// C++ program to check if two  // BSTs contain same set of elements #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node* left, *right;     Node (int x) {         data = x;         left = nullptr;         right = nullptr;     } };  // Function to append nodes of BST1 into set. void appendNodes(Node* root, unordered_set<int> &s) {     if (root == nullptr) return;          s.insert(root->data);     appendNodes(root->left, s);     appendNodes(root->right, s); }  // Recursive function to check if each // node of BST2 exists in BST1 or not. bool checkNodes(Node* root, unordered_set<int> &s) {     if (root == nullptr) return true;          // If current node does not exist in      // set, then return false.     if (s.find(root->data) == s.end())          return false;          // Remove the value from the set          s.erase(root->data);          // Recursively check the left and      // right subtrees.     return      checkNodes(root->left, s)     &&     checkNodes(root->right, s); }  // Main function to compare two BST. bool checkBSTs(Node* root1, Node* root2) {          // append node values into set.     unordered_set<int> s;     appendNodes(root1, s);          // Check nodes of BST2     bool ans = checkNodes(root2, s);          // If BST2 does not contain all values     // of BST1     if (ans == false)          return false;          // If BST2 still contains any value,      // then return false. Otherwise return      // true.     return s.empty() == true; }  int main() {          // Tree 1     //         15     //        /  \     //      10    20     //     /  \     \     //    5   12     25     Node* root1 = new Node(15);     root1->left = new Node(10);     root1->right = new Node(20);     root1->left->left = new Node(5);     root1->left->right = new Node(12);     root1->right->right = new Node(25);          // Tree 2     //         15     //        /  \     //      12    20     //     /       \     //    5         25     //     \     //     10     Node* root2 = new Node(15);     root2->left = new Node(12);     root2->right = new Node(20);     root2->left->left = new Node(5);     root2->left->left->right = new Node(10);     root2->right->right = new Node(25);          if (checkBSTs(root1, root2)) {         cout << "True" << endl;     } else {         cout << "False" << endl;     }          return 0; } 
Java
// Java program to check if two  // BSTs contain same set of elements import java.util.HashSet;  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // Function to append nodes of BST1 into set.     static void appendNodes(Node root, HashSet<Integer> s) {         if (root == null) return;          s.add(root.data);         appendNodes(root.left, s);         appendNodes(root.right, s);     }      // Recursive function to check if each     // node of BST2 exists in BST1 or not.     static boolean checkNodes(Node root, HashSet<Integer> s) {         if (root == null) return true;          // If current node does not exist in          // set, then return false.         if (!s.contains(root.data))              return false;          // Remove the value from the set         s.remove(root.data);          // Recursively check the left and          // right subtrees.         return checkNodes(root.left, s) && checkNodes(root.right, s);     }      // Main function to compare two BST.     static boolean checkBSTs(Node root1, Node root2) {                  // Append node values into set.         HashSet<Integer> s = new HashSet<>();         appendNodes(root1, s);          // Check nodes of BST2         boolean ans = checkNodes(root2, s);          // If BST2 does not contain all values         // of BST1         if (!ans)             return false;          // If BST2 still contains any value,          // then return false. Otherwise return          // true.         return s.isEmpty();     }      public static void main(String[] args) {          // Tree 1         //         15         //        /  \         //      10    20         //     /  \     \         //    5   12     25         Node root1 = new Node(15);         root1.left = new Node(10);         root1.right = new Node(20);         root1.left.left = new Node(5);         root1.left.right = new Node(12);         root1.right.right = new Node(25);          // Tree 2         //         15         //        /  \         //      12    20         //     /       \         //    5         25         //     \         //     10         Node root2 = new Node(15);         root2.left = new Node(12);         root2.right = new Node(20);         root2.left.left = new Node(5);         root2.left.left.right = new Node(10);         root2.right.right = new Node(25);          if (checkBSTs(root1, root2)) {             System.out.println("True");         } else {             System.out.println("False");         }     } } 
Python
# Python program to check if two  # BSTs contain same set of elements  class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None  # Function to append nodes of BST1 into set. def appendNodes(root, s):     if root is None:         return          s.add(root.data)     appendNodes(root.left, s)     appendNodes(root.right, s)  # Recursive function to check if each # node of BST2 exists in BST1 or not. def checkNodes(root, s):     if root is None:         return True      # If current node does not exist in      # set, then return false.     if root.data not in s:         return False          # Remove the value from the set          s.remove(root.data)          # Recursively check the left and      # right subtrees.     return checkNodes(root.left, s) and \   	checkNodes(root.right, s)  def checkBSTs(root1, root2):          # Append node values into set.     s = set()     appendNodes(root1, s)          # Check nodes of BST2     ans = checkNodes(root2, s)          # If BST2 does not contain all values     # of BST1     if not ans:         return False          # If BST2 still contains any value,      # then return false. Otherwise return      # true.     return len(s) == 0  if __name__ == "__main__":          # Tree 1     #         15     #        /  \     #      10    20     #     /  \     \     #    5   12     25     root1 = Node(15)     root1.left = Node(10)     root1.right = Node(20)     root1.left.left = Node(5)     root1.left.right = Node(12)     root1.right.right = Node(25)          # Tree 2     #         15     #        /  \     #      12    20     #     /       \     #    5         25     #     \     #     10     root2 = Node(15)     root2.left = Node(12)     root2.right = Node(20)     root2.left.left = Node(5)     root2.left.left.right = Node(10)     root2.right.right = Node(25)          if checkBSTs(root1, root2):         print("True")     else:         print("False") 
C#
// C# program to check if two  // BSTs contain same set of elements using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // Function to append nodes of BST1 into set.     static void appendNodes(Node root, HashSet<int> s) {         if (root == null) return;          s.Add(root.data);         appendNodes(root.left, s);         appendNodes(root.right, s);     }      // Recursive function to check if each     // node of BST2 exists in BST1 or not.     static bool checkNodes(Node root, HashSet<int> s) {         if (root == null) return true;          // If current node does not exist in          // set, then return false.         if (!s.Contains(root.data))              return false;          // Remove the value from the set         s.Remove(root.data);          // Recursively check the left and          // right subtrees.         return checkNodes(root.left, s)            		&& checkNodes(root.right, s);     }      // Main function to compare two BST.     static bool checkBSTs(Node root1, Node root2) {                // Append node values into set.         HashSet<int> s = new HashSet<int>();         appendNodes(root1, s);          // Check nodes of BST2         bool ans = checkNodes(root2, s);          // If BST2 does not contain all values         // of BST1         if (!ans)             return false;          // If BST2 still contains any value,          // then return false. Otherwise return          // true.         return s.Count == 0;     }      static void Main(string[] args) {          // Tree 1         //         15         //        /  \         //      10    20         //     /  \     \         //    5   12     25         Node root1 = new Node(15);         root1.left = new Node(10);         root1.right = new Node(20);         root1.left.left = new Node(5);         root1.left.right = new Node(12);         root1.right.right = new Node(25);          // Tree 2         //         15         //        /  \         //      12    20         //     /       \         //    5         25         //     \         //     10         Node root2 = new Node(15);         root2.left = new Node(12);         root2.right = new Node(20);         root2.left.left = new Node(5);         root2.left.left.right = new Node(10);         root2.right.right = new Node(25);          if (checkBSTs(root1, root2)) {             Console.WriteLine("True");         } else {             Console.WriteLine("False");         }     } } 
JavaScript
// JavaScript program to check if two  // BSTs contain same set of elements  class Node {     constructor(x) {         this.data = x;         this.left = null;         this.right = null;     } }  // Function to append nodes of BST1 into set. function appendNodes(root, s) {     if (root === null) return;      s.add(root.data);     appendNodes(root.left, s);     appendNodes(root.right, s); }  // Recursive function to check if each // node of BST2 exists in BST1 or not. function checkNodes(root, s) {     if (root === null) return true;      // If current node does not exist in      // set, then return false.     if (!s.has(root.data))          return false;      // Remove the value from the set          s.delete(root.data);      // Recursively check the left and      // right subtrees.     return checkNodes(root.left, s)      		&& checkNodes(root.right, s); }  // Main function to compare two BST. function checkBSTs(root1, root2) {          // Append node values into set.     let s = new Set();     appendNodes(root1, s);      // Check nodes of BST2     let ans = checkNodes(root2, s);      // If BST2 does not contain all values     // of BST1     if (!ans)         return false;      // If BST2 still contains any value,      // then return false. Otherwise return      // true.     return s.size === 0; }  // Tree 1 //         15 //        /  \ //      10    20 //     /  \     \ //    5   12     25 let root1 = new Node(15); root1.left = new Node(10); root1.right = new Node(20); root1.left.left = new Node(5); root1.left.right = new Node(12); root1.right.right = new Node(25);  // Tree 2 //         15 //        /  \ //      12    20 //     /       \ //    5         25 //     \ //     10 let root2 = new Node(15); root2.left = new Node(12); root2.right = new Node(20); root2.left.left = new Node(5); root2.left.left.right = new Node(10); root2.right.right = new Node(25);  if (checkBSTs(root1, root2)) {     console.log("True"); } else {     console.log("False"); } 

Output
True 

Note: If BST's does not contain distinct elements, then this approach can be implemented using hashmap instead of hash set.

[Expected Approach - 2] Using In-Order Traversal and Array - O(n) Time and O(n) Space

The idea is to use the property of BST that in-order traversal of a BST generates a sorted array. So, traverse the trees and generate two arrays. If the two arrays are same, then the BST's have same set of elements, so return true. Otherwise return false.

Below is the implementation of the above approach: 

C++
// C++ program to check if two  // BSTs contain same set of elements #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node* left, *right;     Node (int x) {         data = x;         left = nullptr;         right = nullptr;     } };  // In-order function to append  // nodes of BST into array void appendNodes(Node* root, vector<int> &arr) {     if (root == nullptr) return;          appendNodes(root->left, arr);     arr.push_back(root->data);     appendNodes(root->right, arr); }  // Main function to compare two BST. bool checkBSTs(Node* root1, Node* root2) {          vector<int> arr1, arr2;     appendNodes(root1, arr1);     appendNodes(root2, arr2);          // If size of two arrays is not      // same, return false.     if (arr1.size() != arr2.size())         return false;              for (int i=0; i<arr1.size(); i++) {                  // If elements do not match,         // return false.         if (arr1[i] != arr2[i])              return false;     }          return true; }  int main() {          // Tree 1     //         15     //        /  \     //      10    20     //     /  \     \     //    5   12     25     Node* root1 = new Node(15);     root1->left = new Node(10);     root1->right = new Node(20);     root1->left->left = new Node(5);     root1->left->right = new Node(12);     root1->right->right = new Node(25);          // Tree 2     //         15     //        /  \     //      12    20     //     /       \     //    5         25     //     \     //     10     Node* root2 = new Node(15);     root2->left = new Node(12);     root2->right = new Node(20);     root2->left->left = new Node(5);     root2->left->left->right = new Node(10);     root2->right->right = new Node(25);          if (checkBSTs(root1, root2)) {         cout << "True" << endl;     } else {         cout << "False" << endl;     }          return 0; } 
Java
// Java program to check if two  // BSTs contain same set of elements import java.util.ArrayList;  class Node {     int data;     Node left, right;          Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // In-order function to append      // nodes of BST into array     static void appendNodes(Node root,                              ArrayList<Integer> arr) {         if (root == null) return;                  appendNodes(root.left, arr);         arr.add(root.data);         appendNodes(root.right, arr);     }      // Main function to compare two BST.     static boolean checkBSTs(Node root1, Node root2) {         ArrayList<Integer> arr1 = new ArrayList<>();         ArrayList<Integer> arr2 = new ArrayList<>();         appendNodes(root1, arr1);         appendNodes(root2, arr2);          // If size of two arrays is not          // same, return false.         if (arr1.size() != arr2.size()) return false;                  for (int i = 0; i < arr1.size(); i++) {              // If elements do not match,             // return false.             if (!arr1.get(i).equals(arr2.get(i)))                  return false;         }         return true;     }      public static void main(String[] args) {          // Tree 1         //         15         //        /  \         //      10    20         //     /  \     \         //    5   12     25         Node root1 = new Node(15);         root1.left = new Node(10);         root1.right = new Node(20);         root1.left.left = new Node(5);         root1.left.right = new Node(12);         root1.right.right = new Node(25);          // Tree 2         //         15         //        /  \         //      12    20         //     /       \         //    5         25         //     \         //     10         Node root2 = new Node(15);         root2.left = new Node(12);         root2.right = new Node(20);         root2.left.left = new Node(5);         root2.left.left.right = new Node(10);         root2.right.right = new Node(25);          if (checkBSTs(root1, root2)) {             System.out.println("True");         } else {             System.out.println("False");         }     } } 
Python
# Python program to check if two  # BSTs contain same set of elements  class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None  # In-order function to append  # nodes of BST into array def appendNodes(root, arr):     if root is None:         return          appendNodes(root.left, arr)     arr.append(root.data)     appendNodes(root.right, arr)  # Main function to compare two BST. def checkBSTs(root1, root2):     arr1, arr2 = [], []     appendNodes(root1, arr1)     appendNodes(root2, arr2)          # If size of two arrays is not      # same, return false.     if len(arr1) != len(arr2):         return False          for i in range(len(arr1)):                # If elements do not match,         # return false.         if arr1[i] != arr2[i]:             return False          return True  if __name__ == "__main__":          # Tree 1     #         15     #        /  \     #      10    20     #     /  \     \     #    5   12     25     root1 = Node(15)     root1.left = Node(10)     root1.right = Node(20)     root1.left.left = Node(5)     root1.left.right = Node(12)     root1.right.right = Node(25)          # Tree 2     #         15     #        /  \     #      12    20     #     /       \     #    5         25     #     \     #     10     root2 = Node(15)     root2.left = Node(12)     root2.right = Node(20)     root2.left.left = Node(5)     root2.left.left.right = Node(10)     root2.right.right = Node(25)          if checkBSTs(root1, root2):         print("True")     else:         print("False") 
C#
// C# program to check if two  // BSTs contain same set of elements using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {      // In-order function to append      // nodes of BST into array     static void appendNodes(Node root, List<int> arr) {         if (root == null) return;                  appendNodes(root.left, arr);         arr.Add(root.data);         appendNodes(root.right, arr);     }      // Main function to compare two BST.     static bool checkBSTs(Node root1, Node root2) {         List<int> arr1 = new List<int>();         List<int> arr2 = new List<int>();         appendNodes(root1, arr1);         appendNodes(root2, arr2);          // If size of two arrays is not          // same, return false.         if (arr1.Count != arr2.Count) return false;                  for (int i = 0; i < arr1.Count; i++) {                          // If elements do not match,             // return false.             if (arr1[i] != arr2[i])                  return false;         }         return true;     }      static void Main() {          // Tree 1         //         15         //        /  \         //      10    20         //     /  \     \         //    5   12     25         Node root1 = new Node(15);         root1.left = new Node(10);         root1.right = new Node(20);         root1.left.left = new Node(5);         root1.left.right = new Node(12);         root1.right.right = new Node(25);          // Tree 2         //         15         //        /  \         //      12    20         //     /       \         //    5         25         //     \         //     10         Node root2 = new Node(15);         root2.left = new Node(12);         root2.right = new Node(20);         root2.left.left = new Node(5);         root2.left.left.right = new Node(10);         root2.right.right = new Node(25);          if (checkBSTs(root1, root2)) {             Console.WriteLine("True");         } else {             Console.WriteLine("False");         }     } } 
JavaScript
// JavaScript program to check if two  // BSTs contain same set of elements  class Node {     constructor(x) {         this.data = x;         this.left = null;         this.right = null;     } }  // In-order function to append  // nodes of BST into array function appendNodes(root, arr) {     if (root === null) return;          appendNodes(root.left, arr);     arr.push(root.data);     appendNodes(root.right, arr); }  // Main function to compare two BST. function checkBSTs(root1, root2) {     let arr1 = [], arr2 = [];     appendNodes(root1, arr1);     appendNodes(root2, arr2);      // If size of two arrays is not      // same, return false.     if (arr1.length !== arr2.length) return false;          for (let i = 0; i < arr1.length; i++) {                  // If elements do not match,         // return false.         if (arr1[i] !== arr2[i])              return false;     }     return true; }  // Tree 1 //         15 //        /  \ //      10    20 //     /  \     \ //    5   12     25 let root1 = new Node(15); root1.left = new Node(10); root1.right = new Node(20); root1.left.left = new Node(5); root1.left.right = new Node(12); root1.right.right = new Node(25);  // Tree 2 //         15 //        /  \ //      12    20 //     /       \ //    5         25 //     \ //     10 let root2 = new Node(15); root2.left = new Node(12); root2.right = new Node(20); root2.left.left = new Node(5); root2.left.left.right = new Node(10); root2.right.right = new Node(25);  if (checkBSTs(root1, root2)) {     console.log("True"); } else {     console.log("False"); } 

Output
True 

Next Article
Check if two BSTs contain same set of elements

H

Harsh Agarwal
Improve
Article Tags :
  • Misc
  • Binary Search Tree
  • DSA
  • cpp-vector
  • cpp-unordered_set
Practice Tags :
  • Binary Search Tree
  • Misc

Similar Reads

    Binary Search Tree
    A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the node’s value. All nodes in the right subtree of a node contain values s
    4 min read
    Introduction to Binary Search Tree
    Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
    3 min read
    Applications of BST
    Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
    3 min read
    Applications, Advantages and Disadvantages of Binary Search Tree
    A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
    2 min read
    Insertion in Binary Search Tree (BST)
    Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
    15 min read
    Searching in Binary Search Tree (BST)
    Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
    7 min read
    Deletion in Binary Search Tree (BST)
    Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w
    10 min read
    Binary Search Tree (BST) Traversals – Inorder, Preorder, Post Order
    Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
    10 min read
    Balance a Binary Search Tree
    Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
    10 min read
    Self-Balancing Binary Search Trees
    Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences