Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Practice Mathematical Algorithm
  • Mathematical Algorithms
  • Pythagorean Triplet
  • Fibonacci Number
  • Euclidean Algorithm
  • LCM of Array
  • GCD of Array
  • Binomial Coefficient
  • Catalan Numbers
  • Sieve of Eratosthenes
  • Euler Totient Function
  • Modular Exponentiation
  • Modular Multiplicative Inverse
  • Stein's Algorithm
  • Juggler Sequence
  • Chinese Remainder Theorem
  • Quiz on Fibonacci Numbers
Open In App
Next Article:
Nth Fibonacci Number
Next article icon

How to check if a given number is Fibonacci number?

Last Updated : 26 Oct, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a number ‘n’, how to check if n is a Fibonacci number. First few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ..

Examples :

Input : 8
Output : Yes

Input : 34
Output : Yes

Input : 41
Output : No

Approach 1:

A simple way is to generate Fibonacci numbers until the generated number is greater than or equal to ‘n’. Following is an interesting property about Fibonacci numbers that can also be used to check if a given number is Fibonacci or not.

A number is Fibonacci if and only if one or both of (5*n2 + 4) or (5*n2 – 4) is a perfect square (Source: Wiki). Following is a simple program based on this concept.

C++




// C++ program to check if x is a perfect square
#include <bits/stdc++.h>
using namespace std;
 
// A utility function that returns true if x is perfect
// square
bool isPerfectSquare(int x)
{
    int s = sqrt(x);
    return (s * s == x);
}
 
// Returns true if n is a Fibonacci Number, else false
bool isFibonacci(int n)
{
    // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or
    // both is a perfect square
    return isPerfectSquare(5 * n * n + 4)
        || isPerfectSquare(5 * n * n - 4);
}
 
// A utility function to test above functions
int main()
{
    for (int i = 1; i <= 10; i++)
        isFibonacci(i)
            ? cout << i << " is a Fibonacci Number \n"
            : cout << i << " is a not Fibonacci Number \n";
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta (kriSania804)
 
 

C




// C program to check if x is a perfect square
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
 
// A utility function that returns true if x is perfect
// square
bool isPerfectSquare(int x)
{
    int s = sqrt(x);
    return (s * s == x);
}
 
// Returns true if n is a Fibonacci Number, else false
bool isFibonacci(int n)
{
    // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or
    // both is a perfect square
    return isPerfectSquare(5 * n * n + 4)
        || isPerfectSquare(5 * n * n - 4);
}
 
// A utility function to test above functions
int main()
{
    for (int i = 1; i <= 10; i++) {
        if (isFibonacci(i))
            printf("%d is a Fibonacci Number \n", i);
        else
            printf("%d is a not Fibonacci Number \n", i);
    }
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta (kriSania804)
 
 

Java




// Java program to check if x is a perfect square
 
class GFG
{
    // A utility method that returns true if x is perfect square
    static boolean isPerfectSquare(int x)
    {
        int s = (int) Math.sqrt(x);
        return (s*s == x);
    }
     
    // Returns true if n is a Fibonacci Number, else false
    static boolean isFibonacci(int n)
    {
        // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both
        // is a perfect square
        return isPerfectSquare(5*n*n + 4) ||
            isPerfectSquare(5*n*n - 4);
    }
 
    // Driver method
    public static void main(String[] args)
    {
        for (int i = 1; i <= 10; i++)
            System.out.println(isFibonacci(i) ? i + " is a Fibonacci Number" :
                                                i + " is a not Fibonacci Number");
    }
}
//This code is contributed by Nikita Tiwari
 
 

Python




# python program to check if x is a perfect square
import math
 
# A utility function that returns true if x is perfect square
def isPerfectSquare(x):
    s = int(math.sqrt(x))
    return s*s == x
 
# Returns true if n is a Fibonacci Number, else false
def isFibonacci(n):
 
    # n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both
    # is a perfect square
    return isPerfectSquare(5*n*n + 4) or isPerfectSquare(5*n*n - 4)
     
# A utility function to test above functions
for i in range(1,11):
    if (isFibonacci(i) == True):
        print i,"is a Fibonacci Number"
    else:
        print i,"is a not Fibonacci Number "
 
 

C#




// C# program to check if
// x is a perfect square
using System;
 
class GFG {
 
    // A utility function that returns
    // true if x is perfect square
    static bool isPerfectSquare(int x)
    {
        int s = (int)Math.Sqrt(x);
        return (s * s == x);
    }
 
    // Returns true if n is a
    // Fibonacci Number, else false
    static bool isFibonacci(int n)
    {
        // n is Fibonacci if one of
        // 5*n*n + 4 or 5*n*n - 4 or
        // both are a perfect square
        return isPerfectSquare(5 * n * n + 4) ||
            isPerfectSquare(5 * n * n - 4);
    }
 
    // Driver method
    public static void Main()
    {
        for (int i = 1; i <= 10; i++)
            Console.WriteLine(isFibonacci(i) ? i +
                            " is a Fibonacci Number" : i +
                            " is a not Fibonacci Number");
    }
}
 
// This code is contributed by Sam007
 
 

Javascript




<script>
// javascript program to check if x is a perfect square
 
// A utility function that returns true if x is perfect square
function isPerfectSquare( x)
{
    let s = parseInt(Math.sqrt(x));
    return (s * s == x);
}
 
// Returns true if n is a Fibonacci Number, else false
function isFibonacci( n)
{
 
    // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both
    // is a perfect square
    return isPerfectSquare(5 * n * n + 4) ||
        isPerfectSquare(5 * n * n - 4);
}
 
// A utility function to test above functions
for (let i = 1; i <= 10; i++)
    isFibonacci(i)? document.write( i + " is a Fibonacci Number <br/>"):
                    document.write(i + " is a not Fibonacci Number <br/>") ;
                     
// This code is contributed by Rajput-Ji
 
</script>
 
 

PHP




<?php
// PHP program to check if
// x is a perfect square
 
// A utility function that
// returns true if x is
// perfect square
function isPerfectSquare($x)
{
    $s = (int)(sqrt($x));
    return ($s * $s == $x);
}
 
// Returns true if n is a
// Fibonacci Number, else false
function isFibonacci($n)
{
    // n is Fibonacci if one of
    // 5*n*n + 4 or 5*n*n - 4 or
    // both is a perfect square
    return isPerfectSquare(5 * $n * $n + 4) ||
        isPerfectSquare(5 * $n * $n - 4);
}
 
// Driver Code
for ($i = 1; $i <= 10; $i++)
if(isFibonacci($i))
echo "$i is a Fibonacci Number \n";
else
echo "$i is a not Fibonacci Number \n" ;
 
// This code is contributed by mits
?>
 
 
Output
1 is a Fibonacci Number  2 is a Fibonacci Number  3 is a Fibonacci Number  4 is a not Fibonacci Number  5 is a Fibonacci Number  6 is a not Fibonacci Number  7 is a not Fibonacci Number  8 is a Fibona...

Time Complexity: O(log N), where N is is the number that we square-root.
Auxiliary Space: O(1)

Approach 2:

In this approach, we first handle the special case where the input number is 0 (which is a Fibonacci number). Then, we use a while loop to generate Fibonacci numbers until we find a Fibonacci number greater than or equal to the input number. If the generated Fibonacci number is equal to the input number, we return true. Otherwise, we check if either (5 * n * n + 4) or (5 * n * n – 4) is a perfect square, as per the formula mentioned in the original code.

This approach may be more efficient than the original code in some cases, especially for larger input values, as it generates Fibonacci numbers on-the-fly and stops as soon as it finds a Fibonacci number greater than or equal to the input number.

C++




#include <bits/stdc++.h>
using namespace std;
 
bool isPerfectSquare(int n) {
    int root = sqrt(n);
    return (root * root == n);
}
 
bool isFibonacci(int n) {
    if (n == 0) {
        return true;
    }
    int a = 0, b = 1, c = 1;
    while (c < n) {
        a = b;
        b = c;
        c = a + b;
    }
    return (c == n || isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4));
}
 
int main() {
    for (int i = 1; i <= 10; i++) {
        if (isFibonacci(i)) {
            cout << i << " is a Fibonacci number.\n";
        } else {
            cout << i << " is not a Fibonacci number.\n";
        }
    }
    return 0;
}
 
 

Java




import java.util.*;
 
public class Main {
    public static boolean isPerfectSquare(int n) {
        int root = (int) Math.sqrt(n);
        return (root * root == n);
    }
 
    public static boolean isFibonacci(int n) {
        if (n == 0) {
            return true;
        }
        int a = 0, b = 1, c = 1;
        while (c < n) {
            a = b;
            b = c;
            c = a + b;
        }
        return (c == n || isPerfectSquare(5 * n * n + 4) || isPerfectSquare(5 * n * n - 4));
    }
 
    public static void main(String[] args) {
        for (int i = 1; i <= 10; i++) {
            if (isFibonacci(i)) {
                System.out.println(i + " is a Fibonacci number.");
            } else {
                System.out.println(i + " is not a Fibonacci number.");
            }
        }
    }
}
 
 

Python3




import math
 
def is_perfect_square(n):
    root = int(math.sqrt(n))
    return (root * root == n)
 
def is_fibonacci(n):
    if n == 0:
        return True
    a, b, c = 0, 1, 1
    while c < n:
        a = b
        b = c
        c = a + b
    return c == n or is_perfect_square(5 * n * n + 4) or is_perfect_square(5 * n * n - 4)
 
for i in range(1, 11):
    if is_fibonacci(i):
        print(i, "is a Fibonacci number.")
    else:
        print(i, "is not a Fibonacci number.")
 
 

C#




// C# program for the above approach
 
using System;
 
public class Program {
    static bool IsPerfectSquare(int n) {
    int root = (int)Math.Sqrt(n);
    return (root * root == n);
    }
     
    static bool IsFibonacci(int n) {
        if (n == 0) {
            return true;
        }
        int a = 0, b = 1, c = 1;
        while (c < n) {
            a = b;
            b = c;
            c = a + b;
        }
        return (c == n || IsPerfectSquare(5 * n * n + 4) || IsPerfectSquare(5 * n * n - 4));
    }
     
    public static void Main() {
        for (int i = 1; i <= 10; i++) {
            if (IsFibonacci(i)) {
                Console.WriteLine(i + " is a Fibonacci number.");
            }
            else {
                Console.WriteLine(i + " is not a Fibonacci number.");
            }
        }
    }
 
}
// This code is contributed by adityasha4x71
 
 

Javascript




function is_perfect_square(n) {
    let root = Math.floor(Math.sqrt(n));
    return (root * root === n);
}
 
function is_fibonacci(n) {
    if (n === 0) {
        return true;
    }
    let a = 0, b = 1, c = 1;
    while (c < n) {
        [a, b] = [b, c];
        c = a + b;
    }
    return c === n || is_perfect_square(5 * n * n + 4) || is_perfect_square(5 * n * n - 4);
}
 
for (let i = 1; i <= 10; i++) {
    if (is_fibonacci(i)) {
        console.log(i + " is a Fibonacci number.");
    } else {
        console.log(i + " is not a Fibonacci number.");
    }
}
 
// Contributed by adityasha4x71
 
 
Output
1 is a Fibonacci number. 2 is a Fibonacci number. 3 is a Fibonacci number. 4 is not a Fibonacci number. 5 is a Fibonacci number. 6 is not a Fibonacci number. 7 is not a Fibonacci number. 8 is a Fibona...

Time Complexity: O(log N), where N is is the number that we square-root.
Auxiliary Space: O(1)

Approach 3:

This is another approach to check if a given number is Fibonacci number or not.

Steps:

To check if a given number is Fibonacci number or not, we do the following steps:

  1. First check if the number is 0 or 1, then return true.
  2. Then till the number comes do while loop.
  3. In each iteration:
    • First calculate Fibonacci of that iteration.
    • Then check if it matches with given number or not.
      • If matches, return true.
      • If the value goes beyond, given number then return false.
      • Otherwise continue.

Below is the implementation of the above approach:

C++




// C++ program to check if a given number is
// Fibonacci number or not
#include <iostream>
using namespace std;
 
// Function to check Fibonacci number
bool isFibonacci(int N)
{
    if (N == 0 || N == 1)
        return true;
    int a = 0, b = 1, c;
    while (true) {
        c = a + b;
        a = b;
        b = c;
        if (c == N)
            return true;
        else if (c >= N) {
            return false;
        }
    }
}
 
int main()
{
    for (int i = 1; i <= 10; i++) {
        if (isFibonacci(i)) {
            cout << i << " is a Fibonacci number.\n";
        }
        else {
            cout << i << " is not a Fibonacci number.\n";
        }
    }
    return 0;
}
 
// This code is contributed by Susobhan Akhuli
 
 

Java




public class GFG {
 
    // Function to check if a given number is a Fibonacci
    // number
    static boolean isFibonacci(int N)
    {
        // Fibonacci numbers start with 0 and 1, so they are
        // already Fibonacci
        if (N == 0 || N == 1)
            return true;
 
        // Initialize two variables to track Fibonacci
        // numbers
        int a = 0, b = 1, c;
 
        // Generate Fibonacci numbers until we reach N or a
        // number greater than N
        while (true) {
            // Calculate the next Fibonacci number in the
            // sequence
            c = a + b;
            a = b;
            b = c;
 
            // If the current Fibonacci number is equal to
            // N, it is a Fibonacci number
            if (c == N)
                return true;
            // If the current Fibonacci number is greater
            // than N, it is not a Fibonacci number
            else if (c >= N) {
                return false;
            }
        }
    }
 
    public static void main(String[] args)
    {
        // Loop from 1 to 10 to check if each number is a
        // Fibonacci number
        for (int i = 1; i <= 10; i++) {
            // Call the isFibonacci function to check if the
            // number is a Fibonacci number
            if (isFibonacci(i)) {
                System.out.println(
                    i + " is a Fibonacci number.");
            }
            else {
                System.out.println(
                    i + " is not a Fibonacci number.");
            }
        }
    }
}
 
// This code is contributed by shivamgupta310570
 
 

Python3




# Python program to check if a given number is
# Fibonacci number or not
 
# Function to check Fibonacci number
def isFibonacci(N):
    if N == 0 or N == 1:
        return True
    a, b = 0, 1
    while True:
        c = a + b
        a = b
        b = c
        if c == N:
            return True
        elif c >= N:
            return False
 
# Driver Code
if __name__ == '__main__':
    for i in range(1, 11):
        if isFibonacci(i):
            print(i, "is a Fibonacci number.")
        else:
            print(i, "is not a Fibonacci number.")
 
# This code is contributed by Aaysi Mishra
 
 

C#




// C# program to check if a given number is
// Fibonacci number or not
using System;
 
public class GFG {
    // Function to check if a given number is a Fibonacci
    // number
    static bool IsFibonacci(int N)
    {
        // Fibonacci numbers start with 0 and 1, so they are
        // already Fibonacci
        if (N == 0 || N == 1)
            return true;
 
        // Initialize two variables to track Fibonacci
        // numbers
        int a = 0, b = 1, c;
 
        // Generate Fibonacci numbers until we reach N or a
        // number greater than N
        while (true) {
            // Calculate the next Fibonacci number in the
            // sequence
            c = a + b;
            a = b;
            b = c;
 
            // If the current Fibonacci number is equal to
            // N, it is a Fibonacci number
            if (c == N)
                return true;
            // If the current Fibonacci number is greater
            // than N, it is not a Fibonacci number
            else if (c >= N) {
                return false;
            }
        }
    }
 
    static void Main(string[] args)
    {
        // Loop from 1 to 10 to check if each number is a
        // Fibonacci number
        for (int i = 1; i <= 10; i++) {
            // Call the IsFibonacci function to check if the
            // number is a Fibonacci number
            if (IsFibonacci(i)) {
                Console.WriteLine(
                    $"{i} is a Fibonacci number.");
            }
            else {
                Console.WriteLine(
                    $"{i} is not a Fibonacci number.");
            }
        }
    }
}
 
// This code is contributed by Susobhan Akhuli
 
 

Javascript




// JavaScript program to check if a given number is
// Fibonacci number or not
 
// Function to check Fibonacci number
function isFibonacci(N) {
    if (N === 0 || N === 1) return true;
    let a = 0;
    let b = 1;
    let c;
    while (true) {
        c = a + b;
        a = b;
        b = c;
        if (c === N) return true;
        else if (c >= N) {
            return false;
        }
    }
}
 
for (let i = 1; i <= 10; i++) {
    if (isFibonacci(i)) {
          console.log(i + " is a Fibonacci number.");
    }
    else {
          console.log(i + " is not a Fibonacci number.");
    }
}
 
// This code is contributed by Susobhan Akhuli
 
 
Output
1 is a Fibonacci number. 2 is a Fibonacci number. 3 is a Fibonacci number. 4 is not a Fibonacci number. 5 is a Fibonacci number. 6 is not a Fibonacci number. 7 is not a Fibonacci number. 8 is a Fibona...

Time Complexity: O(N), for iteration.
Auxiliary Space: O(1)

This article is contributed by Abhay Rathi.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.

You’ll access excellent video content by our CEO, Sandeep Jain, tackle common interview questions, and engage in real-time coding contests covering various DSA topics. We’re here to prepare you thoroughly for online assessments and interviews.

Ready to dive in? Explore our free demo content and join our DSA course, trusted by over 100,000 geeks! Whether it’s DSA in C++, Java, Python, or JavaScript we’ve got you covered. Let’s embark on this exciting journey together!



Next Article
Nth Fibonacci Number

A

Abhay Rathi
Improve
Article Tags :
  • DSA
  • Mathematical
  • Fibonacci
  • MAQ Software
Practice Tags :
  • MAQ Software
  • Fibonacci
  • Mathematical

Similar Reads

  • How to check if a given number is Fibonacci number?
    Given a number ‘n’, how to check if n is a Fibonacci number. First few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, .. Examples :Input : 8Output : YesInput : 34Output : YesInput : 41Output : NoApproach 1:A simple way is to generate Fibonacci numbers until the generated number
    15+ min read
  • Nth Fibonacci Number
    Given a positive integer n, the task is to find the nth Fibonacci number. The Fibonacci sequence is a sequence where the next term is the sum of the previous two terms. The first two terms of the Fibonacci sequence are 0 followed by 1. The Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21 Example: Inp
    15+ min read
  • C++ Program For Fibonacci Numbers
    The Fibonacci series is the sequence where each number is the sum of the previous two numbers. The first two numbers of the Fibonacci series are 0 and 1 and are used to generate the whole series. In this article, we will learn how to find the nth Fibonacci number in C++. Examples Input: 5Output: 5Ex
    5 min read
  • Python Program for n-th Fibonacci number
    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation Fn = Fn-1 + Fn-2With seed values F0 = 0 and F1 = 1.Table of Content Python Program for n-th Fibonacci number Using Formula Python Program for n-th Fibonacci number Using RecursionPython Program for n-th
    6 min read
  • Interesting Programming facts about Fibonacci numbers
    We know Fibonacci number, Fn = Fn-1 + Fn-2. First few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, .... . Here are some interesting facts about Fibonacci number : 1. Pattern in Last digits of Fibonacci numbers : Last digits of first few Fibonacci Numbers ar
    15+ min read
  • Find nth Fibonacci number using Golden ratio
    Fibonacci series = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ........Different methods to find nth Fibonacci number are already discussed. Another simple way of finding nth Fibonacci number is using golden ratio as Fibonacci numbers maintain approximate golden ratio till infinite. Golden ratio: [Tex]\varphi
    6 min read
  • Fast Doubling method to find the Nth Fibonacci number
    Given an integer N, the task is to find the N-th Fibonacci numbers.Examples: Input: N = 3 Output: 2 Explanation: F(1) = 1, F(2) = 1 F(3) = F(1) + F(2) = 2 Input: N = 6 Output: 8 Approach: The Matrix Exponentiation Method is already discussed before. The Doubling Method can be seen as an improvement
    14 min read
  • Tail Recursion for Fibonacci
    Write a tail recursive function for calculating the n-th Fibonacci number. Examples : Input : n = 4 Output : fib(4) = 3 Input : n = 9 Output : fib(9) = 34 Prerequisites : Tail Recursion, Fibonacci numbersA recursive function is tail recursive when the recursive call is the last thing executed by the
    4 min read
  • Sum of Fibonacci Numbers
    Given a number positive number n, find value of f0 + f1 + f2 + .... + fn where fi indicates i'th Fibonacci number. Remember that f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, ... Examples : Input : n = 3Output : 4Explanation : 0 + 1 + 1 + 2 = 4 Input : n = 4Output : 7Explanation : 0 + 1 + 1 + 2 +
    9 min read
  • Fibonacci Series

    • Program to Print Fibonacci Series
      Ever wondered about the cool math behind the Fibonacci series? This simple pattern has a remarkable presence in nature, from the arrangement of leaves on plants to the spirals of seashells. We're diving into this Fibonacci Series sequence. It's not just math, it's in art, nature, and more! Let's dis
      9 min read

    • Program to Print Fibonacci Series in Java
      The Fibonacci series is a series of elements where the previous two elements are added to generate the next term. It starts with 0 and 1, for example, 0, 1, 1, 2, 3, and so on. We can mathematically represent it in the form of a function to generate the n'th Fibonacci number because it follows a con
      6 min read

    • Print the Fibonacci sequence - Python
      To print the Fibonacci sequence in Python, we need to generate a series of numbers where each number is the sum of the two preceding ones, starting from 0 and 1. The Fibonacci sequence follows a specific pattern that begins with 0 and 1, and every subsequent number is the sum of the two previous num
      5 min read

    • C Program to Print Fibonacci Series
      The Fibonacci series is the sequence where each number is the sum of the previous two numbers of the sequence. The first two numbers are 0 and 1 which are used to generate the whole series. Example Input: n = 5Output: 0 1 1 2 3Explanation: The first 5 terms of the Fibonacci series are 0, 1, 1, 2, 3.
      4 min read

    • JavaScript Program to print Fibonacci Series
      The Fibonacci sequence is the integer sequence where the first two terms are 0 and 1. After that, the next term is defined as the sum of the previous two terms. The recurrence relation defines the sequence Fn of Fibonacci numbers: Fn = Fn-1 + Fn-2 with seed values F0 = 0 and F1 = 1 Examples: Input :
      4 min read

    • Length of longest subsequence of Fibonacci Numbers in an Array
      Given an array arr containing non-negative integers, the task is to print the length of the longest subsequence of Fibonacci numbers in this array.Examples: Input: arr[] = { 3, 4, 11, 2, 9, 21 } Output: 3 Here, the subsequence is {3, 2, 21} and hence the answer is 3.Input: arr[] = { 6, 4, 10, 13, 9,
      5 min read

    • Last digit of sum of numbers in the given range in the Fibonacci series
      Given two non-negative integers M, N which signifies the range [M, N] where M ? N, the task is to find the last digit of the sum of FM + FM+1... + FN where FK is the Kth Fibonacci number in the Fibonacci series. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... Examples: Input: M = 3, N = 9 Output:
      5 min read

    • K- Fibonacci series
      Given integers 'K' and 'N', the task is to find the Nth term of the K-Fibonacci series. In K - Fibonacci series, the first 'K' terms will be '1' and after that every ith term of the series will be the sum of previous 'K' elements in the same series. Examples: Input: N = 4, K = 2 Output: 3 The K-Fibo
      7 min read

    • Fibonacci Series in Bash
      Prerequisite: Fibonacci Series Write a program to print the Fibonacci sequence up to nth digit using Bash. Examples: Input : 5 Output : Fibonacci Series is : 0 1 1 2 3 Input :4 Output : Fibonacci Series is : 0 1 1 2 The Fibonacci numbers are the numbers in the following integer sequence . 0, 1, 1, 2
      1 min read

    • R Program to Print the Fibonacci Sequence
      The Fibonacci sequence is a series of numbers in which each number (known as a Fibonacci number) is the sum of the two preceding ones. The sequence starts with 0 and 1, and then each subsequent number is the sum of the two previous numbers. The Fibonacci sequence has many applications in various fie
      3 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences