Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Practice Sorting
  • MCQs on Sorting
  • Tutorial on Sorting
  • Bubble Sort
  • Quick Sort
  • Merge Sort
  • Insertion Sort
  • Selection Sort
  • Heap Sort
  • Sorting Complexities
  • Radix Sort
  • ShellSort
  • Counting Sort
  • Bucket Sort
  • TimSort
  • Bitonic Sort
  • Uses of Sorting Algorithm
Open In App
Next Article:
Tangents between two Convex Polygons
Next article icon

Check if the given point lies inside given N points of a Convex Polygon

Last Updated : 17 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given coordinates of the N points of a Convex Polygon. The task is to check if the given point (X, Y) lies inside the polygon. Examples:

Input: N = 7, Points: {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)}, Query: X = 3, Y = 2 Below is the image of plotting of the given points: Output: YES Input: N = 7, Points: {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)}, Query: X = 3, Y = 9 Output: NO

Approach: The idea is to use Graham Scan Algorithm to find if the given point lies inside the Convex Polygon or not. Below are some of the observations:

  • Suppose the point (X, Y) is a point in the set of points of the convex polygon. If the Graham Scan Algorithm is used on this set of points, another set of points would be obtained, which makes up the Convex Hull.
  • If the point (X, Y) lies inside the polygon, it won’t lie on the Convex Hull and hence won’t be present in the newly generated set of points of the Convex Hull.
  • If the point (X, Y) lies outside the polygon, it will then lie on the Convex Hull formed and hence would be present in the newly generated set of points of the Convex Hull.

Below are the steps to solve the problem:

  1. Sort the given points along with the query point in the increasing order of their abscissa values. If the abscissa values(x-coordinates) of any two points are the same, then sort them on the basis of their ordinate value.
  2. Set the bottom-left point as the start point and top-right point as the end point of the convex hull.
  3. Iterate over all the points and find out the points, forming the convex polygon, that lies in between the start and endpoints in the clockwise direction. Store these points in a vector.
  4. Iterate over all the points and find out the points, forming the convex polygon, that lies in between the start and endpoints in the counter-clockwise direction. Store these points in the vector.
  5. Check if the query point exists in the vector then the point lies outside the convex hull. So return “No”.
  6. If the point doesn’t exist in the vector, then the point lies inside the convex hull print “Yes”.

Below is the implementation based on the above approach: 

CPP
// C++ program for the above approach #include <bits/stdc++.h> using namespace std;    // Sorting Function to sort points bool cmp(pair<int, int>& a,          pair<int, int>& b) {        if (a.first == b.first)         return a.second < b.second;     return a.first < b.first; }    // Function To Check Clockwise // Orientation int cw(pair<int, int>& a,        pair<int, int>& b,        pair<int, int>& c) {        int p = a.first * (b.second - c.second)             + b.first * (c.second - a.second)             + c.first * (a.second - b.second);        return p < 0ll; }    // Function To Check Counter // Clockwise Orientation int ccw(pair<int, int>& a,         pair<int, int>& b,         pair<int, int>& c) {        int p = a.first * (b.second - c.second)             + b.first * (c.second - a.second)             + c.first * (a.second - b.second);        return p > 0ll; }    // Graham Scan algorithm to find Convex // Hull from given points vector<pair<int, int> > convexHull(     vector<pair<int, int> >& v) {     // Sort the points     sort(v.begin(),          v.end(), cmp);        int n = v.size();     if (n <= 3)         return v;        // Set starting and ending points as     // left bottom and top right     pair<int, int> p1 = v[0];     pair<int, int> p2 = v[n - 1];        // Vector to store points in     // upper half and lower half     vector<pair<int, int> > up, down;        // Insert StartingEnding Points     up.push_back(p1);     down.push_back(p1);        // Iterate over points     for (int i = 1; i < n; i++) {            if (i == n - 1 || !ccw(p1, v[i], p2)) {                while (up.size() > 1                    && ccw(up[up.size() - 2],                           up[up.size() - 1],                           v[i])) {                    // Exclude this point                 // if we can form better                    up.pop_back();             }                up.push_back(v[i]);         }            if (i == n - 1 || !cw(p1, v[i], p2)) {                while (down.size() > 1                    && cw(down[down.size() - 2],                          down[down.size() - 1],                          v[i])) {                    // Exclude this point                 // if we can form better                 down.pop_back();             }             down.push_back(v[i]);         }     }        // Combine upper and  lower half     for (int i = down.size() - 2;          i > 0; i--)         up.push_back(down[i]);        // Remove duplicate points     up.resize(unique(up.begin(),                      up.end())               - up.begin());        // Return the points on Convex Hull     return up; }    // Function to find if point lies inside // a convex polygon bool isInside(vector<pair<int, int> > points,               pair<int, int> query) {     // Include the query point in the     // polygon points     points.push_back(query);        // Form a convex hull from the points     points = convexHull(points);        // Iterate over the points     // of convex hull     for (auto x : points) {            // If the query point lies         // on the convex hull         // then it wasn't inside         if (x == query)             return false;     }        // Otherwise it was Inside     return true; }    // Driver Code int main() {        // Points of the polygon     // given in any order     int n = 7;     vector<pair<int, int> > points;        points = { { 1, 1 }, { 2, 1 }, { 3, 1 },                { 4, 1 }, { 4, 2 }, { 4, 3 },                { 4, 4 } };        // Query Points     pair<int, int> query = { 3, 2 };        // Check if its inside     if (isInside(points, query)) {         cout << "YES" << endl;     }     else {         cout << "NO" << endl;     }        return 0; } 
Java
import java.util.ArrayList; import java.util.Arrays; import java.util.List;  public class GFG {     // Function To Check Clockwise Orientation     static boolean cw(int[] a, int[] b, int[] c)     {         int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])                 + c[0] * (a[1] - b[1]);          return p < 0;     }      // Function To Check Counter Clockwise Orientation     static boolean ccw(int[] a, int[] b, int[] c)     {         int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])                 + c[0] * (a[1] - b[1]);          return p > 0;     }      // Graham Scan Algorithm To Find Convex Hull From Given     // Points     static int[][] convexHull(int[][] v)     {         // Sort The Points         Arrays.sort(v, (a, b) -> a[0] - b[0]);          int n = v.length;         if (n <= 3) {             return v;         }          // Set Starting And Ending Points As Left Bottom And         // Top Right         int[] p1 = v[0];         int[] p2 = v[n - 1];          // Vector To Store Points In Upper Half And Lower         // Half         List<int[]> up = new ArrayList<int[]>();         List<int[]> down = new ArrayList<int[]>();          // Insert Starting/Ending Points         up.add(p1);         down.add(p1);          // Iterate Over Points         for (int i = 1; i < n; i++) {             if (i == n - 1 || !ccw(p1, v[i], p2)) {                 while (up.size() > 1                        && ccw(up.get(up.size() - 2),                               up.get(up.size() - 1),                               v[i])) {                     // Exclude This Point If We Can Form                     // Better                     up.remove(up.size() - 1);                 }                  up.add(v[i]);             }              if (i == n - 1 || !cw(p1, v[i], p2)) {                 while (down.size() > 1                        && cw(down.get(down.size() - 2),                              down.get(down.size() - 1),                              v[i])) {                     // Exclude This Point If We Can Form                     // Better                     down.remove(down.size() - 1);                 }                  down.add(v[i]);             }         }          // Combine Upper And Lower Half         for (int i = down.size() - 2; i >= 0; i--) {             up.add(down.get(i));         }          // Return The Points On Convex Hull         return up.toArray(new int[0][]);     }      // Function To Find If Point Lies Inside A convex     // polygon     static boolean isInside(int[][] points, int[] query)     {         // Include the query point in the         // polygon points         int[][] points1 = new int[points.length + 1][];         for (int i = 0; i < points.length; i++)             points1[i] = points[i];         points1[points.length] = query;          // Form a convex hull from the points         points = convexHull(points);          // Iterate over the points         // of convex hull         for (int[] x : points) {              // If the query point lies             // on the convex hull             // then it wasn't inside             if (Arrays.equals(x, query))                 return false;         }          // Otherwise it was Inside         return true;     }      // Driver Code      public static void main(String[] args)     {         // Points of the polygon         // given in any order         int n = 7;         int[][] points             = { new int[] { 1, 1 }, new int[] { 2, 1 },                 new int[] { 3, 1 }, new int[] { 4, 1 },                 new int[] { 4, 2 }, new int[] { 4, 3 },                 new int[] { 4, 4 } };          // Query Points         int[] query = { 3, 2 };          // Check if its inside         if (isInside(points, query)) {             System.out.println("YES");         }         else {             System.out.println("NO");         }     } } 
Python
# Python3 program for the above approach  # Function To Check Clockwise # Orientation def cw(a, b, c):     p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1]);        return p < 0;  # Function To Check Counter # Clockwise Orientation def ccw(a, b, c):     p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1]);        return p > 0;  # Graham Scan algorithm to find Convex # Hull from given points def convexHull(v):      # Sort the points     v.sort();             n = len(v);     if (n <= 3):         return v;        # Set starting and ending points as     # left bottom and top right     p1 = v[0];     p2 = v[n - 1];        # Vector to store points in     # upper half and lower half     up = []     down = [];        # Insert StartingEnding Points     up.append(tuple(p1));     down.append(p1);        # Iterate over points     for i in range(1, n):                  if i == n - 1 or (not ccw(p1, v[i], p2)):              while len(up) > 1 and ccw(up[len(up) - 2], up[len(up) - 1], v[i]):                   # Exclude this point                 # if we can form better                    up.pop();                             up.append(tuple(v[i]));                     if i == n - 1 and  (not cw(p1, v[i], p2)):                 while (len(down) > 1) and cw(down[len(down) - 2], down[len(down) - 1], v[i]):                    # Exclude this point                 # if we can form better                 down.pop();                          down.append(v[i]);              # Combine upper and  lower half     for i in range(len(down) - 2, -1, -1):         up.append(tuple(down[i]));        # Remove duplicate points     up = set(up)     up = list(up)        # Return the points on Convex Hull     return up;  # Function to find if point lies inside # a convex polygon def isInside( points, query):      # Include the query point in the     # polygon points     points.append(query);        # Form a convex hull from the points     points = convexHull(points);        # Iterate over the points     # of convex hull     for x in points:             # If the query point lies         # on the convex hull         # then it wasn't inside         if x == query:             return False;          # Otherwise it was Inside     return True;  # Driver Code  # Points of the polygon # given in any order n = 7; points = [[1, 1 ], [2, 1 ], [ 3, 1 ], [ 4, 1 ], [ 4, 2 ], [4, 3 ], [ 4, 4 ]];    # Query Points query = [ 3, 2 ];    # Check if its inside if (isInside(points, query)) :     print("YES");      else :     print("NO");        # This code is contributed by phasing17. 
C#
using System; using System.Linq; using System.Collections.Generic;  class GFG {     // Function To Check Clockwise Orientation     static bool cw(int[] a, int[] b, int[] c)     {         int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])                 + c[0] * (a[1] - b[1]);          return p < 0;     }      // Function To Check Counter Clockwise Orientation     static bool ccw(int[] a, int[] b, int[] c)     {         int p = a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1])                 + c[0] * (a[1] - b[1]);          return p > 0;     }      // Graham Scan Algorithm To Find Convex Hull From Given     // Points     static int[][] convexHull(int[][] v)     {         // Sort The Points         Array.Sort(v, (a, b) => a[0] - b[0]);          int n = v.Length;         if (n <= 3) {             return v;         }          // Set Starting And Ending Points As Left Bottom And         // Top Right         int[] p1 = v[0];         int[] p2 = v[n - 1];          // Vector To Store Points In Upper Half And Lower         // Half         List<int[]> up = new List<int[]>();         List<int[]> down = new List<int[]>();          // Insert Starting/Ending Points         up.Add(p1);         down.Add(p1);          // Iterate Over Points         for (int i = 1; i < n; i++) {             if (i == n - 1 || !ccw(p1, v[i], p2)) {                 while (up.Count > 1                        && ccw(up[up.Count - 2],                               up[up.Count - 1], v[i])) {                     // Exclude This Point If We Can Form                     // Better                     up.RemoveAt(up.Count - 1);                 }                  up.Add(v[i]);             }              if (i == n - 1 || !cw(p1, v[i], p2)) {                 while (down.Count > 1                        && cw(down[down.Count - 2],                              down[down.Count - 1], v[i])) {                     // Exclude This Point If We Can Form                     // Better                     down.RemoveAt(down.Count - 1);                 }                  down.Add(v[i]);             }         }          // Combine Upper And Lower Half         for (int i = down.Count - 2; i >= 0; i--) {             up.Add(down[i]);         }          // Remove Duplicate Points         up = new List<int[]>(new HashSet<int[]>(up));          // Return The Points On Convex Hull         return up.ToArray();     }      // Function To Find If Point Lies Inside A     //  convex polygon     static bool isInside(int[][] points, int[] query)     {         // Include the query point in the         // polygon points         int[][] points1 = new int[points.Length + 1][];         for (int i = 0; i < points.Length; i++)             points1[i] = points[i];         points1[points.Length] = query;          // Form a convex hull from the points         points = convexHull(points);          // Iterate over the points         // of convex hull         foreach(var x in points)         {              // If the query point lies             // on the convex hull             // then it wasn't inside             if (Enumerable.SequenceEqual(x, query))                 return false;         }          // Otherwise it was Inside         return true;     }      // Driver Code      public static void Main(string[] args)     {         // Points of the polygon         // given in any order         int n = 7;         int[][] points             = { new int[] { 1, 1 }, new int[] { 2, 1 },                 new int[] { 3, 1 }, new int[] { 4, 1 },                 new int[] { 4, 2 }, new int[] { 4, 3 },                 new int[] { 4, 4 } };          // Query Points         int[] query = { 3, 2 };          // Check if its inside         if (isInside(points, query)) {             Console.WriteLine("YES");         }         else {             Console.WriteLine("NO");         }     } } 
JavaScript
// JS program for the above approach     // Sorting Function to sort points function cmp(a, b) {        if (a[0] == b[0])         return a[1] < b[1];     return a[0] < b[0]; }    // Function To Check Clockwise // Orientation function cw(a, b, c) {        let p = a[0] * (b[1] - c[1])             + b[0] * (c[1] - a[1])             + c[0] * (a[1] - b[1]);        return p < 0; }    // Function To Check Counter // Clockwise Orientation function ccw(a, b, c) {        let p = a[0] * (b[1] - c[1])             + b[0] * (c[1] - a[1])             + c[0] * (a[1] - b[1]);        return p > 0; }    // Graham Scan algorithm to find Convex // Hull from given points function convexHull(v) {     // Sort the points     v.sort(cmp);             let n = v.length;     if (n <= 3)         return v;        // Set starting and ending points as     // left bottom and top right     let p1 = v[0];     let p2 = v[n - 1];        // Vector to store points in     // upper half and lower half     let  up = [], down = [];        // Insert StartingEnding Points     up.push(p1);     down.push(p1);        // Iterate over points     for (var i = 1; i < n; i++) {            if (i == n - 1 || !ccw(p1, v[i], p2)) {                while (up.length > 1                    && ccw(up[up.length - 2],                           up[up.length - 1],                           v[i])) {                    // Exclude this point                 // if we can form better                    up.pop();             }                up.push(v[i]);         }            if (i == n - 1 || !cw(p1, v[i], p2)) {                while (down.length > 1                    && cw(down[down.length - 2],                          down[down.length - 1],                          v[i])) {                    // Exclude this point                 // if we can form better                 down.pop();             }             down.push(v[i]);         }     }        // Combine upper and  lower half     for (var i = down.length - 2;          i > 0; i--)         up.push(down[i]);        // Remove duplicate points     up = new Set(up)     up = Array.from(up)        // Return the points on Convex Hull     return up; }    // Function to find if point lies inside // a convex polygon function isInside( points, query) {     // Include the query point in the     // polygon points     points.push(query);        // Form a convex hull from the points     points = convexHull(points);        // Iterate over the points     // of convex hull     for (let x of points) {            // If the query point lies         // on the convex hull         // then it wasn't inside         if (x == query)             return false;     }        // Otherwise it was Inside     return true; }    // Driver Code         // Points of the polygon     // given in any order let n = 7; let  points = [[1, 1 ], [2, 1 ], [ 3, 1 ],                [ 4, 1 ], [ 4, 2 ], [4, 3 ],                [ 4, 4 ]];        // Query Points     let query = [ 3, 2 ];        // Check if its inside     if (isInside(points, query)) {         console.log("YES");     }     else {        console.log("NO");     }    

Output
YES

Time Complexity: O(N * log(N)) Auxiliary Space: O(N)



Next Article
Tangents between two Convex Polygons
author
s5960r
Improve
Article Tags :
  • Advanced Data Structure
  • Algorithms
  • DSA
  • Geometric
  • Greedy
  • Mathematical
  • Sorting
Practice Tags :
  • Advanced Data Structure
  • Algorithms
  • Geometric
  • Greedy
  • Mathematical
  • Sorting

Similar Reads

  • Convex Hull Algorithm
    The Convex Hull Algorithm is used to find the convex hull of a set of points in computational geometry. The convex hull is the smallest convex set that encloses all the points, forming a convex polygon. This algorithm is important in various applications such as image processing, route planning, and
    8 min read
  • Convex Hull using Divide and Conquer Algorithm
    In computational geometry, a convex hull is the smallest convex polygon that contains a given set of points. It is a fundamental concept with applications in various fields such as computer graphics, robotics, and image processing. Importance of Convex Hull:Convex hulls are important in computationa
    15 min read
  • Convex Hull using Jarvis' Algorithm or Wrapping
    Given a set of points in the plane. the convex hull of the set is the smallest convex polygon that contains all the points of it. We strongly recommend to see the following post first. How to check if two given line segments intersect?The idea of Jarvis's Algorithm is simple, we start from the leftm
    14 min read
  • Convex Hull using Graham Scan
    A convex hull is the smallest convex polygon that contains a given set of points. It is a useful concept in computational geometry and has applications in various fields such as computer graphics, image processing, and collision detection. A convex polygon is a polygon in which all interior angles a
    15+ min read
  • Convex Hull | Monotone chain algorithm
    Given a set of points, the task is to find the convex hull of the given points. The convex hull is the smallest convex polygon that contains all the points. Please check this article first: Convex Hull | Set 1 (Jarvis’s Algorithm or Wrapping) Examples: Input: Points[] = {{0, 3}, {2, 2}, {1, 1}, {2,
    12 min read
  • Quickhull Algorithm for Convex Hull
    Given a set of points, a Convex hull is the smallest convex polygon containing all the given points. Input : points[] = {{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}};Output : The points in convex hull are: (0, 0) (0, 3) (3, 1) (4, 4)Input : points[] = {{0, 3}, {1, 1}Output : Not P
    14 min read
  • Problems on Convex Hull

    • Dynamic Convex hull | Adding Points to an Existing Convex Hull
      Given a convex hull, we need to add a given number of points to the convex hull and print the convex hull after every point addition. The points should be in anti-clockwise order after addition of every point. Examples: Input : Convex Hull : (0, 0), (3, -1), (4, 5), (-1, 4) Point to add : (100, 100)
      15 min read

    • Deleting points from Convex Hull
      Given a fixed set of points. We need to find convex hull of given set. We also need to find convex hull when a point is removed from the set. Example: Initial Set of Points: (-2, 8) (-1, 2) (0, 1) (1, 0) (-3, 0) (-1, -9) (2, -6) (3, 0) (5, 3) (2, 5) Initial convex hull:- (-2, 8) (-3, 0) (-1, -9) (2,
      15+ min read

    • Perimeter of Convex hull for a given set of points
      Given n 2-D points points[], the task is to find the perimeter of the convex hull for the set of points. A convex hull for a set of points is the smallest convex polygon that contains all the points. Examples: Input: points[] = {{0, 3}, {2, 2}, {1, 1}, {2, 1}, {3, 0}, {0, 0}, {3, 3}} Output: 12 Inpu
      10 min read

    • Check if the given point lies inside given N points of a Convex Polygon
      Given coordinates of the N points of a Convex Polygon. The task is to check if the given point (X, Y) lies inside the polygon. Examples: Input: N = 7, Points: {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)}, Query: X = 3, Y = 2 Below is the image of plotting of the given points: Output: YES
      15 min read

    • Tangents between two Convex Polygons
      Given two convex polygons, we aim to identify the lower and upper tangents connecting them. As shown in the figure below, TRL and TLR represent the upper and lower tangents, respectively. Examples: Input: First Polygon : [[2, 2], [3, 3], [5, 2], [4, 0], [3, 1]] Second Polygon : [[-1, 0], [0, 1], [1,
      15+ min read

    • Check if given polygon is a convex polygon or not
      Given a 2D array point[][] with each row of the form {X, Y}, representing the co-ordinates of a polygon in either clockwise or counterclockwise sequence, the task is to check if the polygon is a convex polygon or not. If found to be true, then print "Yes" . Otherwise, print "No". In a convex polygon
      9 min read

    • Check whether two convex regular polygon have same center or not
      Given two positive integers N and M which denotes the sides of the convex regular polygon where N < M, the task is to check whether polygons have the same center or not if N-sided polygon was inscribed in an M-sided polygon.Center of Polygon: Point inside a polygon which is equidistant from each
      3 min read

    • Minimum Enclosing Circle
      Prerequisites: Equation of circle when three points on the circle are given, Convex HullGiven an array arr[][] containing N points in a 2-D plane with integer coordinates. The task is to find the centre and the radius of the minimum enclosing circle(MEC). A minimum enclosing circle is a circle in wh
      15+ min read

  • How to Highlight Groups with Convex Hull in ggplot2 in R?
    In this article, we are going to see how to highlight groups with the convex hull in ggplot2 using R Programming Language.  Convex hull polygon refers to the draw a line bounding box around the outermost points in each group. Creating scatterplot for demonstration Here we will use the iris dataset t
    2 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences