Check if given number is perfect square
Last Updated : 17 Sep, 2024
Given a number n, check if it is a perfect square or not.
Examples :
Input : n = 36
Output : Yes
Input : n = 2500
Output : Yes
Explanation: 2500 is a perfect square of 50
Input : n = 8
Output : No
Using sqrt()
- Take the floor()ed square root of the number.
- Multiply the square root twice.
- Use boolean equal operator to verify if the product of square root is equal to the number given.
Code Implementation:
C++ // CPP program to find if x is a // perfect square. #include <bits/stdc++.h> using namespace std; bool isPerfectSquare(long long x) { // Find floating point value of // square root of x. if (x >= 0) { long long sr = sqrt(x); // if product of square root //is equal, then // return T/F return (sr * sr == x); } // else return false if n<0 return false; } int main() { long long x = 49; if (isPerfectSquare(x)) cout << "Yes"; else cout << "No"; return 0; }
C // C program to find if x is a // perfect square. #include <stdio.h> #include <math.h> int isPerfectSquare(long long x) { // Find floating point value of // square root of x. if (x >= 0) { long long sr = sqrt(x); // if product of square root // is equal, then // return T/F return (sr * sr == x); } // else return false if n<0 return 0; } int main() { long long x = 49; if (isPerfectSquare(x)) printf("Yes"); else printf("No"); return 0; }
Java // Java program to find if x is a perfect square. public class GfG { public static boolean isPerfectSquare(long x) { // Find floating point value of // square root of x. if (x >= 0) { long sr = (long)Math.sqrt(x); // if product of square root // is equal, then // return T/F return (sr * sr == x); } // else return false if n<0 return false; } public static void main(String[] args) { long x = 49; if (isPerfectSquare(x)) System.out.println("Yes"); else System.out.println("No"); } }
Python # Python program to find if x is a # perfect square. def is_perfect_square(x): # Find floating point value of # square root of x. if x >= 0: sr = int(x ** 0.5) # if product of square root # is equal, then # return T/F return (sr * sr == x) # else return false if n<0 return False x = 49 if is_perfect_square(x): print("Yes") else: print("No")
C# // C# program to find if x is a // perfect square. using System; class GfG { static bool IsPerfectSquare(long x) { // Find floating point value of // square root of x. if (x >= 0) { long sr = (long) Math.Sqrt(x); // if product of square root // is equal, then // return T/F return (sr * sr == x); } // else return false if n<0 return false; } static void Main() { long x = 49; if (IsPerfectSquare(x)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } }
JavaScript // JavaScript program to find if x is a // perfect square. function isPerfectSquare(x) { // Find floating point value of // square root of x. if (x >= 0) { let sr = Math.floor(Math.sqrt(x)); // if product of square root // is equal, then // return T/F return (sr * sr === x); } // else return false if n<0 return false; } const x = 49; if (isPerfectSquare(x)) console.log("Yes"); else console.log("No");
Time Complexity: O(log(x))
Auxiliary Space: O(1)
- Use the floor and ceil and sqrt() function.
- If they are equal that implies the number is a perfect square.
Code Implementation:
C++ #include <bits/stdc++.h> using namespace std; bool isPerfectSquare(long long n) { // If ceil and floor are equal // the number is a perfect // square if (ceil((double)sqrt(n)) == floor((double)sqrt(n))){ return true; } else{ return false; } } int main() { long long x = 49; if (isPerfectSquare(x)) cout << "Yes"; else cout << "No"; return 0; }
C #include <stdio.h> #include <math.h> // If ceil and floor are equal // the number is a perfect // square int isPerfectSquare(long long n) { if (ceil((double)sqrt(n)) == floor((double)sqrt(n))) { return 1; // true } else { return 0; // false } } int main() { long long x = 49; if (isPerfectSquare(x)) printf("Yes"); else printf("No"); return 0; }
Java public class GfG { public static boolean isPerfectSquare(long n) { // If ceil and floor are equal // the number is a perfect // square if (Math.ceil(Math.sqrt(n)) == Math.floor(Math.sqrt(n))) { return true; } else { return false; } } public static void main(String[] args) { long x = 49; if (isPerfectSquare(x)) System.out.println("Yes"); else System.out.println("No"); } }
Python import math def is_perfect_square(n): # If ceil and floor are equal # the number is a perfect # square if math.ceil(math.sqrt(n)) == math.floor(math.sqrt(n)): return True else: return False x = 49 if is_perfect_square(x): print("Yes") else: print("No")
C# using System; class GfG { public static bool IsPerfectSquare(long n) { // If ceil and floor are equal // the number is a perfect // square if (Math.Ceiling(Math.Sqrt(n)) == Math.Floor(Math.Sqrt(n))) { return true; } else { return false; } } static void Main() { long x = 49; if (IsPerfectSquare(x)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } }
JavaScript function isPerfectSquare(n) { // If ceil and floor are equal // the number is a perfect // square if (Math.ceil(Math.sqrt(n)) === Math.floor(Math.sqrt(n))) { return true; } else { return false; } } const x = 49; if (isPerfectSquare(x)) { console.log("Yes"); } else { console.log("No"); }
Time Complexity : O(sqrt(n))
Auxiliary space: O(1)
Below is the implementation of the above approach:
C++ #include <bits/stdc++.h> using namespace std; // Function to check if a number is a perfect square using // binary search bool isPerfectSquare(long long n) { // Base case: 0 and 1 are perfect squares if (n <= 1) { return true; } // Initialize boundaries for binary search long long left = 1, right = n; while (left <= right) { // Calculate middle value long long mid = left + (right - left) / 2; // Calculate square of the middle value long long square = mid * mid; // If the square matches n, n is a perfect square if (square == n) { return true; } // If the square is smaller than n, search the right // half else if (square < n) { left = mid + 1; } // If the square is larger than n, search the left // half else { right = mid - 1; } } // If the loop completes without finding a perfect // square, n is not a perfect square return false; } int main() { long long x = 49; if (isPerfectSquare(x)) cout << "Yes"; else cout << "No"; return 0; }
C #include <stdio.h> // Function to check if a number is a perfect square using // binary search int isPerfectSquare(long long n) { // Base case: 0 and 1 are perfect squares if (n <= 1) { return 1; } // Initialize boundaries for binary search long long left = 1, right = n; while (left <= right) { // Calculate middle value long long mid = left + (right - left) / 2; // Calculate square of the middle value long long square = mid * mid; // If the square matches n, n is a perfect square if (square == n) { return 1; } // If the square is smaller than n, search the right half else if (square < n) { left = mid + 1; } // If the square is larger than n, search the left half else { right = mid - 1; } } // If the loop completes without finding a perfect square, n is not a perfect square return 0; } int main() { long long x = 49; if (isPerfectSquare(x)) printf("Yes"); else printf("No"); return 0; }
Java public class GfG { // Function to check if a number is a perfect square using // binary search public static boolean isPerfectSquare(long n) { // Base case: 0 and 1 are perfect squares if (n <= 1) { return true; } // Initialize boundaries for binary search long left = 1, right = n; while (left <= right) { // Calculate middle value long mid = left + (right - left) / 2; // Calculate square of the middle value long square = mid * mid; // If the square matches n, n is a perfect square if (square == n) { return true; } // If the square is smaller than n, search the right // half else if (square < n) { left = mid + 1; } // If the square is larger than n, search the left // half else { right = mid - 1; } } // If the loop completes without finding a perfect // square, n is not a perfect square return false; } public static void main(String[] args) { long x = 49; if (isPerfectSquare(x)) System.out.println("Yes"); else System.out.println("No"); } }
Python def is_perfect_square(n): # Base case: 0 and 1 are perfect squares if n <= 1: return True # Initialize boundaries for binary search left, right = 1, n while left <= right: # Calculate middle value mid = left + (right - left) // 2 # Calculate square of the middle value square = mid * mid # If the square matches n, n is a perfect square if square == n: return True # If the square is smaller than n, search the right half elif square < n: left = mid + 1 # If the square is larger than n, search the left half else: right = mid - 1 # If the loop completes without finding a perfect square, n is not a perfect square return False x = 49 if is_perfect_square(x): print("Yes") else: print("No")
C# using System; class GfG { // Function to check if a number is a perfect square using // binary search static bool IsPerfectSquare(long n) { // Base case: 0 and 1 are perfect squares if (n <= 1) { return true; } // Initialize boundaries for binary search long left = 1, right = n; while (left <= right) { // Calculate middle value long mid = left + (right - left) / 2; // Calculate square of the middle value long square = mid * mid; // If the square matches n, n is a perfect square if (square == n) { return true; } // If the square is smaller than n, search the right half else if (square < n) { left = mid + 1; } // If the square is larger than n, search the left half else { right = mid - 1; } } // If the loop completes without finding a perfect square, n is not a perfect square return false; } static void Main() { long x = 49; if (IsPerfectSquare(x)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } }
JavaScript function isPerfectSquare(n) { // Base case: 0 and 1 are perfect squares if (n <= 1) { return true; } // Initialize boundaries for binary search let left = 1, right = n; while (left <= right) { // Calculate middle value let mid = left + Math.floor((right - left) / 2); // Calculate square of the middle value let square = mid * mid; // If the square matches n, n is a perfect square if (square === n) { return true; } // If the square is smaller than n, search the right half else if (square < n) { left = mid + 1; } // If the square is larger than n, search the left half else { right = mid - 1; } } // If the loop completes without finding a perfect square, n is not a perfect square return false; } const x = 49; if (isPerfectSquare(x)) { console.log("Yes"); } else { console.log("No"); }
Time Complexity: O(log n)
Auxiliary Space: O(1)
Using Mathematical Properties:
The idea is based on the fact that perfect squares are always some of first few odd numbers.
1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16
1 + 3 + 5 + 7 + 9 = 25
1 + 3 + 5 + 7 + 9 + 11 = 36
......................................................
Code Implementation:
C++ #include <bits/stdc++.h> using namespace std; bool isPerfectSquare(long long n) { // 0 is considered as a perfect // square if (n == 0) return true; long long odd = 1; while (n > 0) { n -= odd; odd += 2; } return n == 0; } int main() { long long x = 49; if (isPerfectSquare(x)) cout << "Yes"; else cout << "No"; return 0; }
C #include <stdio.h> // 0 is considered as a perfect // square int isPerfectSquare(long long n) { if (n == 0) return 1; // true long long odd = 1; while (n > 0) { n -= odd; odd += 2; } return n == 0; } int main() { long long x = 49; if (isPerfectSquare(x)) printf("Yes"); else printf("No"); return 0; }
Java public class GfG { public static boolean isPerfectSquare(long n) { // 0 is considered as a perfect // square if (n == 0) return true; long odd = 1; while (n > 0) { n -= odd; odd += 2; } return n == 0; } public static void main(String[] args) { long x = 49; if (isPerfectSquare(x)) System.out.println("Yes"); else System.out.println("No"); } }
Python def is_perfect_square(n): # 0 is considered as a perfect # square if n == 0: return True odd = 1 while n > 0: n -= odd odd += 2 return n == 0 x = 49 if is_perfect_square(x): print("Yes") else: print("No")
C# using System; class GfG { public static bool IsPerfectSquare(long n) { // 0 is considered as a perfect // square if (n == 0) return true; long odd = 1; while (n > 0) { n -= odd; odd += 2; } return n == 0; } static void Main() { long x = 49; if (IsPerfectSquare(x)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } }
JavaScript function isPerfectSquare(n) { // 0 is considered as a perfect // square if (n === 0) return true; let odd = 1; while (n > 0) { n -= odd; odd += 2; } return n === 0; } const x = 49; if (isPerfectSquare(x)) { console.log("Yes"); } else { console.log("No"); }
How does this work?
1 + 3 + 5 + ... (2n-1) = Sum(2*i - 1) where 1<=i<=n
= 2*Sum(i) - Sum(1) where 1<=i<=n
= 2n(n+1)/2 - n
= n(n+1) - n
= n2'
Time Complexity Analysis
Let us assume that the above loop runs i times. The following series would have i terms.
1 + 3 + 5 ........ = n [Let there be i terms]
1 + (1 + 2) + (1 + 2 + 2) + ........ = n [Let there be i terms]
(1 + 1 + ..... i-times) + (2 + 4 + 6 .... (i-1)-times) = n
i + (2^(i-1) - 1) = n
2^(i-1) = n + 1 - i
Using this expression, we can say that i is upper bounded by Log n