Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Hash
  • Practice Hash
  • MCQs on Hash
  • Hashing Tutorial
  • Hash Function
  • Index Mapping
  • Collision Resolution
  • Open Addressing
  • Separate Chaining
  • Quadratic probing
  • Double Hashing
  • Load Factor and Rehashing
  • Advantage & Disadvantage
Open In App
Next Article:
Find all duplicate and missing numbers in given permutation array of 1 to N
Next article icon

Check if an Array is a permutation of numbers from 1 to N

Last Updated : 05 Oct, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr containing N positive integers, the task is to check if the given array arr represents a permutation or not. 
 

A sequence of N integers is called a permutation if it contains all integers from 1 to N exactly once.

Examples: 

Input: arr[] = {1, 2, 5, 3, 2} 
Output: No 
Explanation: The given array is not a permutation of numbers from 1 to N, because it contains 2 twice, and 4 is missing for the array to represent a permutation of length 5. 

Input: arr[] = {1, 2, 5, 3, 4} 
Output: Yes 
Explanation: 
Given array contains all integers from 1 to 5 exactly once. Hence, it represents a permutation of length 5.  

Naive Approach: Clearly, the given array will represent a permutation of length N only, where N is the length of the array. So we have to search for each element from 1 to N in the given array. If all the elements are found then the array represents a permutation else it does not.

Algorithm:

  1. Initialize a flag variable "isPermutation" to true.
  2. Initialize a variable "N" to the length of the array.
  3. Loop through integers from 1 to N:
    1. Initialize a flag variable "found" to false.
    2. Loop through the array elements and If the integer "i" is found in the array, set "found" to true and break the loop.
    3. If "found" is false, set "isPermutation" to false and break the loop.
  4. If "isPermutation" is true, print "Array represents a permutation".
  5. Else, print "Array does not represent a permutation".

Below is the implementation of the approach:

C++
// C++ code for the approach  #include <bits/stdc++.h> using namespace std;  // Function to check if an Array is a  // permutation of numbers from 1 to N bool isPermutation(int arr[], int n) {     // Check for each element from 1 to N in the array     for(int i=1; i<=n; i++) {         bool found = false;         for(int j=0; j<n; j++) {             if(arr[j] == i) {                 found = true;                 break;             }         }                // If any element is not found, array is not a permutation         if(!found) {             return false;         }     }        // All elements found, array is a permutation     return true; }  // Driver's code int main() {       // Input     int arr[] = { 1, 2, 5, 3, 2 };     int n = sizeof(arr)/sizeof(arr[0]);          // Function Call     if(isPermutation(arr, n)) {         cout << "Yes" << endl;     }     else {         cout << "No" << endl;     }        return 0; } 
Java
// Java code for the approach  import java.util.*;  public class GFG {      // Function to check if an Array is a     // permutation of numbers from 1 to N     public static boolean isPermutation(int[] arr, int n)     {          // Check for each element from         // 1 to N in the array         for (int i = 1; i <= n; i++) {             boolean found = false;             for (int j = 0; j < n; j++) {                 if (arr[j] == i) {                     found = true;                     break;                 }             }             // If any element is not found,             // array is not a permutation             if (!found) {                 return false;             }         }          // All elements found, array         // is a permutation         return true;     }      // Driver's code     public static void main(String[] args)     {         int[] arr = { 1, 2, 5, 3, 2 };         int n = arr.length;          if (isPermutation(arr, n)) {             System.out.println("Yes");         }         else {             System.out.println("No");         }     } } 
Python3
# Function to check if a list is a permutation of numbers from 1 to N def is_permutation(arr):     n = len(arr)          # Check for each element from 1 to N in the list     for i in range(1, n + 1):         found = False         for j in range(n):             if arr[j] == i:                 found = True                 break                  # If any element is not found, the list is not a permutation         if not found:             return False          # All elements found, the list is a permutation     return True  # Driver's code arr = [1, 2, 5, 3, 2]  # Function Call if is_permutation(arr):     print("Yes") else:     print("No") 
C#
using System;  public class GFG {     // Function to check if an Array is a     // permutation of numbers from 1 to N     public static bool IsPermutation(int[] arr, int n)     {         // Check for each element from         // 1 to N in the array         for (int i = 1; i <= n; i++) {             bool found = false;             for (int j = 0; j < n; j++) {                 if (arr[j] == i) {                     found = true;                     break;                 }             }             // If any element is not found,             // array is not a permutation             if (!found) {                 return false;             }         }          // All elements found, array         // is a permutation         return true;     }      // Driver's code     public static void Main(string[] args)     {         int[] arr = { 1, 2, 5, 3, 2 };         int n = arr.Length;          if (IsPermutation(arr, n)) {             Console.WriteLine("Yes");         }         else {             Console.WriteLine("No");         }     } }  // This code is contributed by Samim Hossain Mondal. 
JavaScript
// Function to check if an Array is a permutation of numbers from 1 to N function isPermutation(arr, n) {     // Check for each element from 1 to N in the array     for (let i = 1; i <= n; i++) {         let found = false;         for (let j = 0; j < n; j++) {             if (arr[j] === i) {                 found = true;                 break;             }         }         // If any element is not found, array is not a permutation         if (!found) {             return false;         }     }      // All elements found, array is a permutation     return true; }  // Driver's code const arr = [1, 2, 5, 3, 2]; const n = arr.length;  if (isPermutation(arr, n)) {     console.log("Yes"); } else {     console.log("No"); } 

Output
No


Time Complexity: O(N2) 
Efficient Approach: 
The above method can be optimized using a set data structure. 

  1. Traverse the given array and insert every element in the set data structure.
  2. Also, find the maximum element in the array. This maximum element will be value N which will represent the size of the set.
  3. After traversal of the array, check if the size of the set is equal to N.
  4. If the size of the set is equal to N then the array represents a permutation else it doesn’t.


Below is the implementation of the above approach: 

C++
// C++ Program to decide if an // array represents a permutation or not  #include <bits/stdc++.h> using namespace std;  // Function to check if an // array represents a permutation or not bool permutation(int arr[], int n) {     // Set to check the count     // of non-repeating elements     set<int> hash;      int maxEle = 0;      for (int i = 0; i < n; i++) {          // Insert all elements in the set         hash.insert(arr[i]);          // Calculating the max element         maxEle = max(maxEle, arr[i]);     }      if (maxEle != n)         return false;      // Check if set size is equal to n     if (hash.size() == n)         return true;      return false; }  // Driver code int main() {     int arr[] = { 1, 2, 5, 3, 2 };     int n = sizeof(arr) / sizeof(int);      if (permutation(arr, n))         cout << "Yes" << endl;     else         cout << "No" << endl;      return 0; } 
Java
// Java Program to decide if an // array represents a permutation or not import java.util.*;  class GFG{  // Function to check if an // array represents a permutation or not static boolean permutation(int []arr, int n) {     // Set to check the count     // of non-repeating elements     Set<Integer> hash = new HashSet<Integer>();       int maxEle = 0;      for (int i = 0; i < n; i++) {          // Insert all elements in the set         hash.add(arr[i]);          // Calculating the max element         maxEle = Math.max(maxEle, arr[i]);     }      if (maxEle != n)         return false;      // Check if set size is equal to n     if (hash.size() == n)         return true;      return false; }  // Driver code public static void main(String args[]) {     int arr[] = { 1, 2, 5, 3, 2 };     int n = arr.length;      if (permutation(arr, n))         System.out.println("Yes");     else         System.out.println("No"); } }  // This code is contributed by Surendra_Gangwar 
Python3
# Python3 Program to decide if an # array represents a permutation or not  # Function to check if an # array represents a permutation or not def permutation(arr, n):              # Set to check the count     # of non-repeating elements     s = set()      maxEle = 0;      for i in range(n):            # Insert all elements in the set         s.add(arr[i]);          # Calculating the max element         maxEle = max(maxEle, arr[i]);          if (maxEle != n):         return False      # Check if set size is equal to n     if (len(s) == n):         return True;      return False;  # Driver code if __name__=='__main__':       arr = [ 1, 2, 5, 3, 2 ]     n = len(arr)      if (permutation(arr, n)):         print("Yes")     else:         print("No")  # This code is contributed by Princi Singh 
C#
// C# Program to decide if an // array represents a permutation or not using System; using System.Collections.Generic;  class GFG{   // Function to check if an // array represents a permutation or not static bool permutation(int []arr, int n) {     // Set to check the count     // of non-repeating elements     HashSet<int> hash = new HashSet<int>();        int maxEle = 0;       for (int i = 0; i < n; i++) {           // Insert all elements in the set         hash.Add(arr[i]);           // Calculating the max element         maxEle = Math.Max(maxEle, arr[i]);     }       if (maxEle != n)         return false;       // Check if set size is equal to n     if (hash.Count == n)         return true;       return false; }   // Driver code public static void Main(String []args) {     int []arr = { 1, 2, 5, 3, 2 };     int n = arr.Length;       if (permutation(arr, n))         Console.WriteLine("Yes");     else         Console.WriteLine("No"); } }  // This code is contributed by Princi Singh 
JavaScript
<script>  // JavaScript Program to decide if an // array represents a permutation or not  // Function to check if an // array represents a permutation or not function permutation(arr, n) {     // Set to check the count     // of non-repeating elements     let hash =  new Set();        let maxEle = 0;        for (let i = 0; i < n; i++) {            // Insert all elements in the set         hash.add(arr[i]);            // Calculating the max element         maxEle = Math.max(maxEle, arr[i]);     }        if (maxEle != n)         return false;        // Check if set size is equal to n     if (hash.length == n)         return true;        return false; }  // Driver Code          let arr = [ 1, 2, 5, 3, 2 ];     let n = arr.length;        if (permutation(arr, n))         document.write("Yes");     else         document.write("No");                    </script> 

Output
No

Time Complexity: O(N log N), Since every insert operation in the set is an O(log N) operation. There will be N such operations hence O(N log N).
Auxiliary Space: O(N)

Efficient Approach:-

  • As we have to check all elements from 1 to N in the array
  • So think that if we just sort the array then if the array element will be from 1 to N then the sequence will be like 1,2,3_____,N.
  • So we can just sort the array and can check is all the elements are like 1,2,3,____,N or not.

Implementation:-

C++
// C++ Program to decide if an // array represents a permutation or not  #include <bits/stdc++.h> using namespace std;  // Function to check if an // array represents a permutation or not bool permutation(int arr[], int n) {       //sorting the array       sort(arr,arr+n);          //traversing the array to find if it is a valid permutation ot not       for(int i=0;i<n;i++)     {           //if i+1 element not present           //or dublicacy is present           if(arr[i]!=i+1)return false;     }          return true; }  // Driver code int main() {     int arr[] = { 1, 2, 5, 3, 2 };     int n = sizeof(arr) / sizeof(int);      if (permutation(arr, n))         cout << "Yes" << endl;     else         cout << "No" << endl;      return 0; } //This code is contributed by shubhamrajput6156 
Java
// Java Program to decide if an // array represents a permutation or not import java.util.*;  class GFG  {    // Function to check if an   // array represents a permutation or not   static boolean permutation(int arr[], int n)   {     // sorting the array     Arrays.sort(arr);      // traversing the array to find if it is a valid permutation ot not     for(int i = 0; i < n; i++)     {       //if i+1 element not present       //or dublicacy is present       if(arr[i]!=i+1)return false;     }      return true;   }    // Driver Code   public static void main(String[] args) {     int arr[] = { 1, 2, 5, 3, 2 };     int n = arr.length;      if (permutation(arr, n))       System.out.println("Yes");     else       System.out.println("No");      return ;   } }  // this code is contributed by bhardwajji 
Python3
# Python3 Program to decide if an # array represents a permutation or not  # Function to check if an # array represents a permutation or not   def permutation(arr, n):     # sorting the array     arr.sort()      # traversing the array to find if it is a valid permutation or not     for i in range(n):         # if i+1 element not present         # or dublicacy is present         if arr[i] != i + 1:             return False      return True   # Driver code if __name__ == '__main__':     arr = [1, 2, 5, 3, 2]     n = len(arr)      if permutation(arr, n):         print("Yes")     else:         print("No") 
C#
// C# Program to decide if an // array represents a permutation or not using System;  public class GFG {     // Function to check if an     // array represents a permutation or not     public static bool permutation(int[] arr, int n)     {           //sorting the array           Array.Sort(arr);            //traversing the array to find if it is a valid permutation ot not           for (int i = 0;i < n;i++)           {               //if i+1 element not present               //or dublicacy is present               if (arr[i] != i + 1)               {                   return false;               }           }            return true;     }          internal static void Main()     {         int[] arr = {1, 2, 5, 3, 2};         int n = arr.Length;          if (permutation(arr, n))         {             Console.Write("Yes");             Console.Write("\n");         }         else         {             Console.Write("No");             Console.Write("\n");         }     } }  //This code is contributed by bhardwajji 
JavaScript
// Function to check if an // array represents a permutation or not function permutation(arr, n) {   // sorting the array   arr.sort();    // traversing the array to find if it is a valid permutation or not   for (let i = 0; i < n; i++) {     // if i+1 element not present     // or dublicacy is present     if (arr[i] !== i + 1) {       return false;     }   }    return true; }  // Driver code const arr = [1, 2, 5, 3, 2]; const n = arr.length;  if (permutation(arr, n)) {   console.log("Yes"); } else {   console.log("No"); } // This code is Contributed by Shushant Kumar 

Output
No

Time Complexity:- O(NLogN)

Space Complexity:- O(1)

Another Efficient Approach: create a boolean array that help in if we already visited that element return False

else  Traverse the Whole array

Below is the implementation of above approach

C++
#include <cstring> #include <iostream>  using namespace std;  bool permutation(int arr[], int n) {     // create a boolean array to keep track of which numbers     // have been seen before     bool x[n];      // initialize the boolean array with false values     memset(x, false, sizeof(x));      // check each number in the array     for (int i = 0; i < n; i++) {         // if the number has not been seen before, mark it         // as seen         if (x[arr[i] - 1] == false) {             x[arr[i] - 1] = true;         }         // if the number has been seen before, the array         // does not represent a permutation         else {             return false;         }     }      // check if all numbers from 1 to n have been seen in     // the array     for (int i = 0; i < n; i++) {         // if a number has not been seen in the array, the         // array does not represent a permutation         if (x[i] == false) {             return false;         }     }      // if the array has passed all checks, it represents a     // permutation     return true; }  int main() {     // initialize the array to be checked     int arr[] = { 1, 2, 3, 4, 5 };     int n = sizeof(arr) / sizeof(arr[0]);      // check if the array represents a permutation     if (permutation(arr, n)) {         cout << "YES" << endl;     }     else {         cout << "NO" << endl;     }      return 0; } 
Java
import java.util.Arrays;  public class Main {      public static boolean permutation(int[] arr, int n) {         // create a boolean array to keep track of which numbers         // have been seen before         boolean[] x = new boolean[n];          // initialize the boolean array with false values         Arrays.fill(x, false);          // check each number in the array         for (int i = 0; i < n; i++) {             // if the number has not been seen before, mark it             // as seen             if (x[arr[i] - 1] == false) {                 x[arr[i] - 1] = true;             }             // if the number has been seen before, the array             // does not represent a permutation             else {                 return false;             }         }          // check if all numbers from 1 to n have been seen in         // the array         for (int i = 0; i < n; i++) {             // if a number has not been seen in the array, the             // array does not represent a permutation             if (x[i] == false) {                 return false;             }         }          // if the array has passed all checks, it represents a         // permutation         return true;     }      public static void main(String[] args) {         // initialize the array to be checked         int[] arr = { 1, 2, 3, 4, 5 };         int n = arr.length;          // check if the array represents a permutation         if (permutation(arr, n)) {             System.out.println("YES");         } else {             System.out.println("NO");         }     } } // This code is contributed by shiv1043g 
Python3
# Python code for the above approach  # Function to check if an # array represents a permutation or not  # time complexity O(N) # space O(N)   def permutation(arr, n):      # crete a bool array that check if the element     # we traversing are already exist in array or not     x = [0] * n     # checking for every element in array     for i in range(n):         if x[arr[i] - 1] == 0:             x[arr[i] - 1] = 1         else:             return False     # for corner cases     for i in range(n):         if x[i] == 0:             return False     return True   # Drive code if __name__ == "__main__":     arr = [1, 2, 3, 4, 5]     n = len(arr)     if (permutation(arr, n)):         print("YES")     else:         print("NO")   # This code is contributed by Shushant Kumar 
C#
using System;  public class Gfg {   public static bool permutation(int[] arr, int n)   {          // create a boolean array to keep track of which numbers     // have been seen before     bool[] x = new bool[n];      // initialize the boolean array with false values     for (int i = 0; i < n; i++)     {       x[i] = false;     }      // check each number in the array     for (int i = 0; i < n; i++)     {       // if the number has not been seen before, mark it       // as seen       if (x[arr[i] - 1] == false)       {         x[arr[i] - 1] = true;       }       // if the number has been seen before, the array       // does not represent a permutation       else       {         return false;       }     }      // check if all numbers from 1 to n have been seen in     // the array     for (int i = 0; i < n; i++)     {       // if a number has not been seen in the array, the       // array does not represent a permutation       if (x[i] == false)       {         return false;       }     }      // if the array has passed all checks, it represents a     // permutation     return true;   }    public static void Main()   {     // initialize the array to be checked     int[] arr = { 1, 2, 3, 4, 5 };     int n = arr.Length;      // check if the array represents a permutation     if (permutation(arr, n))     {       Console.WriteLine("YES");     }     else     {       Console.WriteLine("NO");     }   } } 
JavaScript
// Function to check if an array represents a permutation or not  // time complexity O(N) // space O(N) function permutation(arr, n) {   // create a boolean array to check if the element we're   // traversing already exists in the array or not   let x = new Array(n).fill(false);      // check for every element in array   for (let i = 0; i < n; i++) {     if (x[arr[i] - 1] == false) {       x[arr[i] - 1] = true;     } else {       return false;     }   }      // for corner cases   for (let i = 0; i < n; i++) {     if (x[i] == false) {       return false;     }   }      return true; }  // Drive code let arr = [1, 2, 3, 4, 5]; let n = arr.length;  if (permutation(arr, n)) {   console.log("YES"); } else {   console.log("NO"); }  // This code is contributed by shushant kumar 

Output
YES

Time Complexity: O(N)
Auxiliary Space: O(N)


Next Article
Find all duplicate and missing numbers in given permutation array of 1 to N

M

muskan_garg
Improve
Article Tags :
  • Searching
  • Mathematical
  • Hash
  • Write From Home
  • DSA
  • Arrays
  • permutation
Practice Tags :
  • Arrays
  • Hash
  • Mathematical
  • permutation
  • Searching

Similar Reads

  • Check if an Array is a permutation of numbers from 1 to N : Set 2
    Given an array arr containing N positive integers, the task is to check if the given array arr represents a permutation or not. A sequence of N integers is called a permutation if it contains all integers from 1 to N exactly once. Examples: Input: arr[] = {1, 2, 5, 3, 2} Output: No Explanation: The
    4 min read
  • Change the array into a permutation of numbers from 1 to n
    Given an array A of n elements. We need to change the array into a permutation of numbers from 1 to n using minimum replacements in the array. Examples: Input : A[] = {2, 2, 3, 3} Output : 2 1 3 4 Explanation: To make it a permutation of 1 to 4, 1 and 4 are missing from the array. So replace 2, 3 wi
    5 min read
  • Minimum steps to convert an Array into permutation of numbers from 1 to N
    Given an array arr of length N, the task is to count the minimum number of operations to convert given sequence into a permutation of first N natural numbers (1, 2, ...., N). In each operation, increment or decrement an element by one.Examples: Input: arr[] = {4, 1, 3, 6, 5} Output: 4 Apply decremen
    4 min read
  • Find all duplicate and missing numbers in given permutation array of 1 to N
    Given an array arr[] of size N consisting of the first N natural numbers, the task is to find all the repeating and missing numbers over the range [1, N] in the given array. Examples: Input: arr[] = {1, 1, 2, 3, 3, 5}Output: Missing Numbers: [4, 6]Duplicate Numbers: [1, 3]Explanation:As 4 and 6 are
    8 min read
  • Minimum cost to make an Array a permutation of first N natural numbers
    Given an array arr of positive integers of size N, the task is to find the minimum cost to make this array a permutation of first N natural numbers, where the cost of incrementing or decrementing an element by 1 is 1.Examples: Input: arr[] = {1, 1, 7, 4} Output: 5 Explanation: Perform increment oper
    4 min read
  • Check if two arrays are permutations of each other
    Given two unsorted arrays of the same size, write a function that returns true if two arrays are permutations of each other, otherwise false. Examples: Input: arr1[] = {2, 1, 3, 5, 4, 3, 2} arr2[] = {3, 2, 2, 4, 5, 3, 1}Output: YesInput: arr1[] = {2, 1, 3, 5,} arr2[] = {3, 2, 2, 4}Output: NoWe stron
    15+ min read
  • Check if any permutation of N equals any power of K
    Given a positive integer N and K where [Tex]2 \leq N \leq 10^{18} [/Tex] and [Tex]2 \leq K \leq N [/Tex] . The task is to check whether any permutation of digits of N equals any power of K. If possible return "True" otherwise return "False".Examples: Input: N = 96889010407, K = 7 Output: True Explan
    6 min read
  • Count all the permutation of an array
    Given an array of integer A[] with no duplicate elements, write a function that returns the count of all the permutations of an array having no subarray of [i, i+1] for every i in A[]. Examples: Input: 1 3 9 Output: 3Explanation: All the permutations of 1 3 9 are : [1, 3, 9], [1, 9, 3], [3, 9, 1], [
    10 min read
  • Check if any permutation of a number without any leading zeros is a power of 2 or not
    Given an integer N, the task is to check if any permutation of N without any leading zeros is a power of 2. If any such permutation of the given number exists, then print that permutation. Otherwise, print No. Examples: Input: N = 46Output: 64Explanation:The permutation of 46 which is perfect power
    9 min read
  • Check if Array elements of given range form a permutation
    Given an array arr[] consisting of N distinct integers and an array Q[][2] consisting of M queries of the form [L, R], the task for each query is to check if array elements over the range [L, R] forms a permutation or not. Note: A permutation is a sequence of length N containing each number from 1 t
    13 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences