Check if a string is a scrambled form of another string
Last Updated : 21 Mar, 2025
Given two strings s1 and s2 of equal length, the task is to determine if s2 is a scrambled version of s1.
A scrambled string is formed by recursively splitting the string into two non-empty substrings and rearranging them randomly (s = x + y or s = y + x) and then recursively scramble the two substrings.
Note: A scrambled string is different from an anagram.
Examples:
Input: s1="coder", s2="ocder"
Output: Yes
Explanation: "ocder" is a scrambled form of "coder"
Input: s1="abcde", s2="caebd"
Output: No
Explanation: "caebd" is not a scrambled form of "abcde"
[Naive Approach] Divide and Conquer Approach - Exponential Time
For s2[0..n-1] to be a scrambled version of s1[0..n-1], there must be an index i such that at least one of the following conditions holds true:
- s2[0...i] is a scrambled version of s1[0...i], and s2[i+1...n] is a scrambled version of s1[i+1...n].
- s2[0...i] is a scrambled version of s1[n-i...n], and s2[i+1...n] is a scrambled version of s1[0...n-i-1].
Note: A helpful optimization step is to check if the two strings are anagrams of each other beforehand. If they are not anagrams, it means the strings contain different characters and cannot be scrambled forms of each other.
C++ // C++ Program to check if a // given string is a scrambled // form of another string #include <bits/stdc++.h> using namespace std; bool isAnagram(string &s1, string &s2) { vector<int> cnt(26, 0); for (char ch: s1) cnt[ch-'a']++; for (char ch: s2) cnt[ch-'a']--; for (int i=0; i<26; i++) { if (cnt[i]!=0) return false; } return true; } bool isScramble(string s1, string s2) { // Strings of non-equal length // cant' be scramble strings if (s1.length() != s2.length()) { return false; } int n = s1.length(); // Empty strings are scramble strings if (n == 0) { return true; } // Equal strings are scramble strings if (s1 == s2) { return true; } // Check for the condition of anagram if (isAnagram(s1, s2) == false) { return false; } for (int i = 1; i < n; i++) { // Check if s2[0...i] is a scrambled // string of s1[0...i] and if s2[i+1...n] // is a scrambled string of s1[i+1...n] if (isScramble(s1.substr(0, i), s2.substr(0, i)) && isScramble(s1.substr(i, n - i), s2.substr(i, n - i))) { return true; } // Check if s2[0...i] is a scrambled // string of s1[n-i...n] and s2[i+1...n] // is a scramble string of s1[0...n-i-1] if (isScramble(s1.substr(0, i), s2.substr(n - i, i)) && isScramble(s1.substr(i, n - i), s2.substr(0, n - i))) { return true; } } // If none of the above // conditions are satisfied return false; } int main() { string s1 = "coder"; string s2 = "ocred"; if (isScramble(s1, s2)) { cout << "Yes"; } else { cout << "No"; } return 0; }
Java // Java Program to check if a // given string is a scrambled // form of another string import java.util.Arrays; class GfG { static boolean isAnagram(String s1, String s2) { int[] cnt = new int[26]; for (char ch : s1.toCharArray()) cnt[ch - 'a']++; for (char ch : s2.toCharArray()) cnt[ch - 'a']--; for (int i = 0; i < 26; i++) { if (cnt[i] != 0) return false; } return true; } static boolean isScramble(String s1, String s2) { // Strings of non-equal length // cant' be scramble strings if (s1.length() != s2.length()) { return false; } int n = s1.length(); // Empty strings are scramble strings if (n == 0) { return true; } // Equal strings are scramble strings if (s1.equals(s2)) { return true; } // Check for the condition of anagram if (!isAnagram(s1, s2)) { return false; } for (int i = 1; i < n; i++) { // Check if s2[0...i] is a scrambled // string of s1[0...i] and if s2[i+1...n] // is a scrambled string of s1[i+1...n] if (isScramble(s1.substring(0, i), s2.substring(0, i)) && isScramble(s1.substring(i), s2.substring(i))) { return true; } // Check if s2[0...i] is a scrambled // string of s1[n-i...n] and s2[i+1...n] // is a scramble string of s1[0...n-i-1] if (isScramble(s1.substring(0, i), s2.substring(n - i)) && isScramble(s1.substring(i), s2.substring(0, n - i))) { return true; } } // If none of the above // conditions are satisfied return false; } public static void main(String[] args) { String s1 = "coder"; String s2 = "ocred"; if (isScramble(s1, s2)) { System.out.println("Yes"); } else { System.out.println("No"); } } }
Python # Python Program to check if a # given string is a scrambled # form of another string def isAnagram(s1, s2): cnt = [0] * 26 for ch in s1: cnt[ord(ch) - ord('a')] += 1 for ch in s2: cnt[ord(ch) - ord('a')] -= 1 for i in range(26): if cnt[i] != 0: return False return True def isScramble(s1, s2): # Strings of non-equal length # cant' be scramble strings if len(s1) != len(s2): return False n = len(s1) # Empty strings are scramble strings if n == 0: return True # Equal strings are scramble strings if s1 == s2: return True # Check for the condition of anagram if not isAnagram(s1, s2): return False for i in range(1, n): # Check if s2[0...i] is a scrambled # string of s1[0...i] and if s2[i+1...n] # is a scrambled string of s1[i+1...n] if isScramble(s1[:i], s2[:i]) and isScramble(s1[i:], s2[i:]): return True # Check if s2[0...i] is a scrambled # string of s1[n-i...n] and s2[i+1...n] # is a scramble string of s1[0...n-i-1] if isScramble(s1[:i], s2[n - i:]) and isScramble(s1[i:], s2[:n - i]): return True # If none of the above # conditions are satisfied return False if __name__ == "__main__": s1 = "coder" s2 = "ocred" if isScramble(s1, s2): print("Yes") else: print("No")
C# // C# Program to check if a // given string is a scrambled // form of another string using System; class GfG { static bool isAnagram(string s1, string s2) { int[] cnt = new int[26]; foreach (char ch in s1) cnt[ch - 'a']++; foreach (char ch in s2) cnt[ch - 'a']--; for (int i = 0; i < 26; i++) { if (cnt[i] != 0) return false; } return true; } static bool isScramble(string s1, string s2) { // Strings of non-equal length // cant' be scramble strings if (s1.Length != s2.Length) { return false; } int n = s1.Length; // Empty strings are scramble strings if (n == 0) { return true; } // Equal strings are scramble strings if (s1 == s2) { return true; } // Check for the condition of anagram if (!isAnagram(s1, s2)) { return false; } for (int i = 1; i < n; i++) { // Check if s2[0...i] is a scrambled // string of s1[0...i] and if s2[i+1...n] // is a scrambled string of s1[i+1...n] if (isScramble(s1.Substring(0, i), s2.Substring(0, i)) && isScramble(s1.Substring(i), s2.Substring(i))) { return true; } // Check if s2[0...i] is a scrambled // string of s1[n-i...n] and s2[i+1...n] // is a scramble string of s1[0...n-i-1] if (isScramble(s1.Substring(0, i), s2.Substring(n - i)) && isScramble(s1.Substring(i), s2.Substring(0, n - i))) { return true; } } // If none of the above // conditions are satisfied return false; } static void Main() { string s1 = "coder"; string s2 = "ocred"; if (isScramble(s1, s2)) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } }
JavaScript // JavaScript Program to check if a // given string is a scrambled // form of another string function isAnagram(s1, s2) { let cnt = new Array(26).fill(0); for (let ch of s1) cnt[ch.charCodeAt(0) - 'a'.charCodeAt(0)]++; for (let ch of s2) cnt[ch.charCodeAt(0) - 'a'.charCodeAt(0)]--; for (let i = 0; i < 26; i++) { if (cnt[i] !== 0) return false; } return true; } function isScramble(s1, s2) { if (s1.length !== s2.length) return false; let n = s1.length; if (n === 0) return true; if (s1 === s2) return true; if (!isAnagram(s1, s2)) return false; for (let i = 1; i < n; i++) { if (isScramble(s1.substring(0, i), s2.substring(0, i)) && isScramble(s1.substring(i), s2.substring(i))) return true; if (isScramble(s1.substring(0, i), s2.substring(n - i)) && isScramble(s1.substring(i), s2.substring(0, n - i))) return true; } return false; } let s1 = "coder", s2 = "ocred"; console.log(isScramble(s1, s2) ? "Yes" : "No");
Time Complexity: O(2k+ 2(n-k)), where k and n-k are the length of the two substrings.
Auxiliary Space: O(2n), recursion stack.
[Expected Approach - 1] Using Top-Down DP (Memoization) - O(n^4) time and O(n^3) space
The idea is to use dynamic programming to memoize subproblems where substrings of s1
and s2
can be split and compared recursively under the scramble conditions. By capturing overlapping subproblems, we avoid redundant computations and improve efficiency.
State Representation:
Define dp[i1][j1][i2][j2]
as true
if the substring s1[i1...j1]
can be scrambled into s2[i2...j2]
.
Recurrence Relation:
For every possible split point len
(1 ≤ len
< j1 - i1 + 1
), check two scrambling conditions:
- No Swap:
Check if the first len
characters of s1[i1...j1]
and s2[i2...j2]
are scrambles, and the remaining characters are scrambles: - dp[i1][j1][i2][j2] |= dp[i1][i1+len-1][i2][i2+len-1] && dp[i1+len][j1][i2+len][j2]
- Swap:
Check if the first len
characters of s1[i1...j1]
match the last len
characters of s2[i2...j2]
, and vice versa: - dp[i1][j1][i2][j2] |= dp[i1][i1+len-1][j2-len+1][j2] && dp[i1+len][j1][i2][j2-len]
Base Case:
If i1 == j1
(substring length 1), return s1[i1] == s2[i2]
.
Key Insight: The end indices j1
and j2
can be derived from the start indices i1
, i2
, and the substring length l
(since j1 = i1 + l - 1
and j2 = i2 + l - 1
). This eliminates redundant parameters. Now the states can be defined as:
- Define
dp[i1][i2][l]
as true
if the substring starting at i1
in s1
with length l
can be scrambled into the substring starting at i2
in s2
with the same length l
.
Recurrence Relation:
For every possible split len
(1 ≤ len
< l
), check:
- No Swap: dp[i1][i2][l] |= dp[i1][i2][len] && dp[i1+len][i2+len][l-len]
- Swap: dp[i1][i2][l] |= dp[i1][i2 + (l-len)][len] && dp[i1+len][i2][l-len]
Base Case:
If l == 1
, return s1[i1] == s2[i2]
.
C++ // C++ Program to check if a // given string is a scrambled // form of another string #include <bits/stdc++.h> using namespace std; bool scrambleRecur(int i1, int j1, int i2, int j2, string &s1, string &s2, vector<vector<vector<vector<int>>>> &dp) { // For single character, compare // the two characters. if (i1==j1) { return s1[i1] == s2[i2]; } // If value is computed, return it. if (dp[i1][j1][i2][j2]!=-1) return dp[i1][j1][i2][j2]; bool ans = false; int maxLen = j1-i1+1; for (int len=1; len<maxLen; len++) { // Check if s2[i2, i2+len-1] is scrambled version of s1[i1, i1+len-1] // and s2[i2+len, j2] is scrambled version of s1[i1+len, j1]. bool val1 = scrambleRecur(i1, i1+len-1, i2, i2+len-1, s1, s2, dp) && scrambleRecur(i1+len, j1, i2+len, j2, s1, s2, dp); // Check if s2[j2-len+1, j2] is scrambled version of s1[i1, i1+len-1] // and s2[i2, j2-len] is scrambled version of s1[i1+len, j1]. bool val2 = scrambleRecur(i1, i1+len-1, j2-len+1, j2, s1, s2, dp) && scrambleRecur(i1+len, j1, i2, j2-len, s1, s2, dp); // If any version is scrambled. if (val1 || val2) {ans = true; break; } } // Memoize the value and return it. return dp[i1][j1][i2][j2] = ans; } bool isScramble(string s1, string s2) { int n = s1.length(); // Create a 4d array. vector<vector<vector<vector<int>>>> dp(n, vector<vector<vector<int>>>(n, vector<vector<int>>(n, vector<int>(n, -1)))); return scrambleRecur(0, n-1, 0, n-1, s1, s2, dp); } int main() { string s1 = "coder"; string s2 = "ocred"; if (isScramble(s1, s2)) { cout << "Yes"; } else { cout << "No"; } return 0; }
Java // Java Program to check if a // given string is a scrambled // form of another string import java.util.Arrays; class GfG { static boolean scrambleRecur(int i1, int i2, int length, String s1, String s2, int[][][] dp) { // For single character, compare // the two characters. if (length == 1) { return s1.charAt(i1) == s2.charAt(i2); } // If value is computed, return it. if (dp[i1][i2][length] != -1) return dp[i1][i2][length] == 1; boolean ans = false; for (int len = 1; len < length; len++) { // Check if s2[i2, i2+len-1] is scrambled version // of s1[i1, i1+len-1] and s2[i2+len, i2+length-1] is // scrambled version of s1[i1+len, i1+length-1]. boolean val1 = scrambleRecur(i1, i2, len, s1, s2, dp) && scrambleRecur(i1 + len, i2 + len, length - len, s1, s2, dp); // Check if s2[i2+length-len+1, i2+length] is scrambled version // of s1[i1, i1+len-1] and s2[i2, i2+length-len] is scrambled // version of s1[i1+len, i1+length-1]. boolean val2 = scrambleRecur(i1, i2 + length - len, len, s1, s2, dp) && scrambleRecur(i1 + len, i2, length - len, s1, s2, dp); // If any version is scrambled. if (val1 || val2) {ans = true; break; } } // Memoize the value and return it. dp[i1][i2][length] = ans ? 1 : 0; return ans; } static boolean isScramble(String s1, String s2) { int n = s1.length(); // Create a 3d array. int[][][] dp = new int[n][n][n + 1]; for (int[][] arr2D : dp) for (int[] arr1D : arr2D) Arrays.fill(arr1D, -1); return scrambleRecur(0, 0, n, s1, s2, dp); } public static void main(String[] args) { String s1 = "coder"; String s2 = "ocred"; if (isScramble(s1, s2)) { System.out.println("Yes"); } else { System.out.println("No"); } } }
Python # Python Program to check if a # given string is a scrambled # form of another string def scrambleRecur(i1, i2, length, s1, s2, dp): # For single character, compare # the two characters. if length == 1: return s1[i1] == s2[i2] # If value is computed, return it. if dp[i1][i2][length] != -1: return dp[i1][i2][length] ans = False for len_ in range(1, length): # Check if s2[i2, i2+len-1] is scrambled version # of s1[i1, i1+len-1] and s2[i2+len, i2+length-1] # is scrambled version of s1[i1+len, i1+length-1]. val1 = scrambleRecur(i1, i2, len_, s1, s2, dp) and \ scrambleRecur(i1 + len_, i2 + len_, length - len_, s1, s2, dp) # Check if s2[i2+length-len+1, i2+length] is scrambled # version of s1[i1, i1+len-1] and s2[i2, i2+length-len] # is scrambled version of s1[i1+len, i1+length-1]. val2 = scrambleRecur(i1, i2 + length - len_, len_, s1, s2, dp) and \ scrambleRecur(i1 + len_, i2, length - len_, s1, s2, dp) # If any version is scrambled. if (val1 or val2): ans = True break # Memoize the value and return it. dp[i1][i2][length] = ans return ans def isScramble(s1, s2): n = len(s1) # Create a 3d array. dp = [[[-1] * (n + 1) for _ in range(n)] for _ in range(n)] return scrambleRecur(0, 0, n, s1, s2, dp) if __name__ == "__main__": s1 = "coder" s2 = "ocred" if isScramble(s1, s2): print("Yes") else: print("No")
C# // C# Program to check if a // given string is a scrambled // form of another string using System; class GfG { static bool scrambleRecur(int i1, int i2, int length, string s1, string s2, int[,,] dp) { // For single character, compare // the two characters. if (length == 1) { return s1[i1] == s2[i2]; } // If value is computed, return it. if (dp[i1, i2, length] != -1) return dp[i1, i2, length] == 1; bool ans = false; for (int len = 1; len < length; len++) { // Check if s2[i2, i2+len-1] is scrambled version // of s1[i1, i1+len-1] and s2[i2+len, i2+length-1] // is scrambled version of s1[i1+len, i1+length-1]. bool val1 = scrambleRecur(i1, i2, len, s1, s2, dp) && scrambleRecur(i1 + len, i2 + len, length - len, s1, s2, dp); // Check if s2[i2+length-len+1, i2+length] is scrambled // version of s1[i1, i1+len-1] and s2[i2, i2+length-len] // is scrambled version of s1[i1+len, i1+length-1]. bool val2 = scrambleRecur(i1, i2 + length - len, len, s1, s2, dp) && scrambleRecur(i1 + len, i2, length - len, s1, s2, dp); // If any version is scrambled. if (val1 || val2) {ans = true; break; } } // Memoize the value and return it. dp[i1, i2, length] = ans ? 1 : 0; return ans; } static bool isScramble(string s1, string s2) { int n = s1.Length; // Create a 3d array. int[,,] dp = new int[n, n, n + 1]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k <= n; k++) dp[i, j, k] = -1; return scrambleRecur(0, 0, n, s1, s2, dp); } static void Main() { string s1 = "coder"; string s2 = "ocred"; if (isScramble(s1, s2)) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } }
JavaScript // JavaScript Program to check if a // given string is a scrambled // form of another string function scrambleRecur(i1, i2, length, s1, s2, dp) { // For single character, compare // the two characters. if (length === 1) { return s1[i1] === s2[i2]; } // If value is computed, return it. if (dp[i1][i2][length] !== -1) return dp[i1][i2][length]; let ans = false; for (let len = 1; len < length; len++) { // Check if s2[i2, i2+len-1] is scrambled version // of s1[i1, i1+len-1] and s2[i2+len, i2+length-1] // is scrambled version of s1[i1+len, i1+length-1]. let val1 = scrambleRecur(i1, i2, len, s1, s2, dp) && scrambleRecur(i1 + len, i2 + len, length - len, s1, s2, dp); // Check if s2[i2+length-len+1, i2+length] is scrambled // version of s1[i1, i1+len-1] and s2[i2, i2+length-len] // is scrambled version of s1[i1+len, i1+length-1]. let val2 = scrambleRecur(i1, i2 + length - len, len, s1, s2, dp) && scrambleRecur(i1 + len, i2, length - len, s1, s2, dp); // If any version is scrambled. if (val1 || val2) {ans = true; break; } } // Memoize the value and return it. return dp[i1][i2][length] = ans; } function isScramble(s1, s2) { let n = s1.length; // Create a 3D array. let dp = new Array(n).fill(0).map(() => new Array(n).fill(0).map(() => new Array(n + 1).fill(-1) ) ); return scrambleRecur(0, 0, n, s1, s2, dp); } let s1 = "coder"; let s2 = "ocred"; if (isScramble(s1, s2)) { console.log("Yes"); } else { console.log("No"); }
Time Complexity: O(n^4), where n is the length of the given strings.
Auxiliary Space: O(n^3), due to memoization.
[Expected Approach - 2] Using Bottom-Up DP and Space Optimization - O(n^4) time and O(n^3) space
The idea is to fill the dp table from bottom to up. The table is filled in an iterative manner from len = 2 to n, i1 = 0 to n-1 and i2 = 0 to n-1.
Instead of maintaining 4 parameters (i1, j1, i2, j2), we maintain 3 parameters (i1, i2, len) as j1 - i1 is same as j2 - i2.
C++ // C++ Program to check if a // given string is a scrambled // form of another string #include <bits/stdc++.h> using namespace std; bool isScramble(string s1, string s2) { int n = s1.length(); // dp[i1][i2][l] indicates whether // s1.substr(i1, l) can scramble into s2.substr(i2, l) vector<vector<vector<bool>>> dp(n, vector<vector<bool>>(n, vector<bool>(n + 1, false))); // Base case: substrings of length 1 for (int i1 = 0; i1 < n; ++i1) { for (int i2 = 0; i2 < n; ++i2) { dp[i1][i2][1] = (s1[i1] == s2[i2]); } } // Fill DP table for lengths from 2 to n for (int l = 2; l <= n; ++l) { for (int i1 = 0; i1 <= n - l; ++i1) { for (int i2 = 0; i2 <= n - l; ++i2) { for (int len = 1; len < l; ++len) { // Case 1: No swap bool noSwap = dp[i1][i2][len] && dp[i1 + len][i2 + len][l - len]; // Case 2: Swap bool swap = dp[i1][i2 + (l - len)][len] && dp[i1 + len][i2][l - len]; if (noSwap || swap) { dp[i1][i2][l] = true; break; } } } } } return dp[0][0][n]; } int main() { string s1 = "coder"; string s2 = "ocred"; if (isScramble(s1, s2)) { cout << "Yes"; } else { cout << "No"; } return 0; }
Java // Java Program to check if a // given string is a scrambled // form of another string class GfG { static boolean isScramble(String s1, String s2) { int n = s1.length(); // dp[i1][i2][l] indicates whether // s1.substr(i1, l) can scramble into s2.substr(i2, l) boolean[][][] dp = new boolean[n][n][n + 1]; // Base case: substrings of length 1 for (int i1 = 0; i1 < n; ++i1) { for (int i2 = 0; i2 < n; ++i2) { dp[i1][i2][1] = (s1.charAt(i1) == s2.charAt(i2)); } } // Fill DP table for lengths from 2 to n for (int l = 2; l <= n; ++l) { for (int i1 = 0; i1 <= n - l; ++i1) { for (int i2 = 0; i2 <= n - l; ++i2) { for (int len = 1; len < l; ++len) { // Case 1: No swap boolean noSwap = dp[i1][i2][len] && dp[i1 + len][i2 + len][l - len]; // Case 2: Swap boolean swap = dp[i1][i2 + (l - len)][len] && dp[i1 + len][i2][l - len]; if (noSwap || swap) { dp[i1][i2][l] = true; break; } } } } } return dp[0][0][n]; } public static void main(String[] args) { String s1 = "coder"; String s2 = "ocred"; if (isScramble(s1, s2)) { System.out.println("Yes"); } else { System.out.println("No"); } } }
Python # Python Program to check if a # given string is a scrambled # form of another string def isScramble(s1, s2): n = len(s1) # dp[i1][i2][l] indicates whether # s1[i1:i1+l] can scramble into s2[i2:i2+l] dp = [[[False] * (n + 1) for _ in range(n)] for _ in range(n)] # Base case: substrings of length 1 for i1 in range(n): for i2 in range(n): dp[i1][i2][1] = (s1[i1] == s2[i2]) # Fill DP table for lengths from 2 to n for l in range(2, n + 1): for i1 in range(n - l + 1): for i2 in range(n - l + 1): for length in range(1, l): # Case 1: No swap noSwap = dp[i1][i2][length] and dp[i1 + length][i2 + length][l - length] # Case 2: Swap swap = dp[i1][i2 + (l - length)][length] and dp[i1 + length][i2][l - length] if noSwap or swap: dp[i1][i2][l] = True break return dp[0][0][n] if __name__ == "__main__": s1 = "coder" s2 = "ocred" if isScramble(s1, s2): print("Yes") else: print("No")
C# // C# Program to check if a // given string is a scrambled // form of another string using System; class GfG { static bool isScramble(string s1, string s2) { int n = s1.Length; // dp[i1][i2][l] indicates whether // s1.Substring(i1, l) can scramble into s2.Substring(i2, l) bool[,,] dp = new bool[n, n, n + 1]; // Base case: substrings of length 1 for (int i1 = 0; i1 < n; ++i1) { for (int i2 = 0; i2 < n; ++i2) { dp[i1, i2, 1] = (s1[i1] == s2[i2]); } } // Fill DP table for lengths from 2 to n for (int l = 2; l <= n; ++l) { for (int i1 = 0; i1 <= n - l; ++i1) { for (int i2 = 0; i2 <= n - l; ++i2) { for (int len = 1; len < l; ++len) { // Case 1: No swap bool noSwap = dp[i1, i2, len] && dp[i1 + len, i2 + len, l - len]; // Case 2: Swap bool swap = dp[i1, i2 + (l - len), len] && dp[i1 + len, i2, l - len]; if (noSwap || swap) { dp[i1, i2, l] = true; break; } } } } } return dp[0, 0, n]; } static void Main() { string s1 = "coder"; string s2 = "ocred"; if (isScramble(s1, s2)) { Console.WriteLine("Yes"); } else { Console.WriteLine("No"); } } }
JavaScript // JavaScript Program to check if a // given string is a scrambled // form of another string function isScramble(s1, s2) { let n = s1.length; // dp[i1][i2][l] indicates whether // s1.substring(i1, i1 + l) can scramble into s2.substring(i2, i2 + l) let dp = Array.from({ length: n }, () => Array.from({ length: n }, () => Array(n + 1).fill(false) ) ); // Base case: substrings of length 1 for (let i1 = 0; i1 < n; ++i1) { for (let i2 = 0; i2 < n; ++i2) { dp[i1][i2][1] = (s1[i1] === s2[i2]); } } // Fill DP table for lengths from 2 to n for (let l = 2; l <= n; ++l) { for (let i1 = 0; i1 <= n - l; ++i1) { for (let i2 = 0; i2 <= n - l; ++i2) { for (let len = 1; len < l; ++len) { // Case 1: No swap let noSwap = dp[i1][i2][len] && dp[i1 + len][i2 + len][l - len]; // Case 2: Swap let swap = dp[i1][i2 + (l - len)][len] && dp[i1 + len][i2][l - len]; if (noSwap || swap) { dp[i1][i2][l] = true; break; } } } } } return dp[0][0][n]; } let s1 = "coder"; let s2 = "ocred"; if (isScramble(s1, s2)) { console.log("Yes"); } else { console.log("No"); }